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Introduction 

An introductory guide for advocates produced by the Royal Statistical 
Society and the Inns of Court College of Advocacy as part of the ICCA’s 
project: ‘Promoting Reliability in the Submission and Handling of Expert 
Evidence’. 

“The Inns of Court College of Advocacy is proud to have collaborated with the 
Royal Statistical Society over the production of this booklet. On the College’s side 
it forms a major building block in the development of the training of advocates in 
the effective understanding, presentation and challenging of expert evidence in 
court. Experts in every type of discipline, appearing in every type of court and 
tribunal, habitually base their evidence on statistical data. A proper 
understanding of the way in which statistics can be used – and abused – is an 
essential tool for every advocate.” 

- Derek Wood CBE QC, Chair of the Governors of the ICCA 

‘More and more fields of expertise are using data. So expert evidence, whether in 
pre-trial or in court, will increasingly include a statistical element and it is vital that 
this is used effectively. The Royal Statistical Society started to work on statistics 
and the law following a number of court cases where the interpretation of 
statistics, particularly those presented by experts who were not professional 
statisticians, has been of concern. The RSS welcomes the Inns of Court College of 
Advocacy’s programme to improve the reliability of expert evidence, and we hope 
this guide will ensure that evidence which includes statistics and data is used 
more effectively, for everyone’s benefit.’ 

- Sir David Spiegelhalter, President, Royal Statistical Society 
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How to use this Guide 

This introductory guide will enable you more effectively to understand, recognise and manage 
statistics and probability statements used by expert witnesses, not just statistical witnesses. It 
also provides you with case studies which will enable you to think through how to challenge 
expert witnesses more effectively and assess the admissibility or reliability of their evidence. 

Statistics and probability are complex topics. This booklet does not provide you with all the 
answers, but it aims to identify the main traps and pitfalls you are likely, as an advocate, to 
meet when handling statistical evidence. It will make you more aware of what to look out for, 
introduce you to the basics of statistics and probability, and provide some links to where you 
can find more information. We hope it will encourage you to investigate further opportunities 
for professional development in the understanding, interpretation and presentation of 
statistical and probabilistic evidence. We hope, too, that it will encourage you to consult more 
effectively with appropriate expert witnesses in the preparation of your cases. 

A minority of advocates will have studied mathematics or science to a level that enables them 
instinctively to understand the detail of the statistical, scientific, medical or technical evidence 
which is being introduced in cases in which they are appearing. Most advocates need help, first 
in understanding that evidence, and then knowing how to deploy or challenge it. They must 
therefore be frank and open in asking for help. 

The starting-point will usually be when the advocate meets his or her own expert in 
conference. Experience shows that statistical evidence is a particularly difficult topic to 
handle. This booklet will provide additional help in accomplishing that task. 

The guide begins with a section which covers various examples of statistics and probability 
issues that may arise, or have arisen, in legal cases. 

Section 2 covers basic statistics, probability, inferential statistics and the scientific method. 
You can use these brief chapters to brush up on your existing knowledge and fill in any gaps. 

In Section 3, we provide advice on putting this all into practice, including guidelines for expert 
witnesses, and four case studies in different areas of law that will enable you to test your 
understanding, and consider how you might go about questioning expert witnesses. These 
case studies are intended to be realistic (though fictitious) examples that include several of 
the errors and issues referred to in this guide. 

The fourth Section is a chapter on some controversial issues and potential future 
developments. 

The booklet ends with a final chapter on further resources. The resources suggested here and 
throughout the guide will help you to develop your understanding and confidence further. 

Shaded text such as this contains examples, explanations, and other material to illustrate the 
issues discussed. In section 3 it is used to distinguish between explanatory text and the case 
study text. 

When first introduced, terms with specific statistical meaning are highlighted in bold and are 
included in the Index of statistical terms. Quotes are in italics. Italics are also used for 
emphasis. References to other sections within the document are underlined and italicised. 
Where possible, we have provided hyperlinks to documents that are available on the web; 
these appear blue and underlined and can be accessed from the PDF version of this 
document.  
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Statistics and Probability are Important for 

Advocates 

Statistical evidence and probabilistic reasoning form part of expert witnesses’ testimony in an 
increasingly wide range of litigation spanning criminal, civil and family cases as well as more 
specialist areas such as tax appeals, sports law, and discrimination claims. Many experts use 
statistics even though they may not be statisticians. It is important for an advocate to feel 
comfortable with any statistics and probability statements that might arise in any case. 

One of the main reasons for having this knowledge is to avoid miscarriages of justice, some of 
which have occurred because of the inappropriate use of, and understanding of, statistics and 
probability by judges, expert witnesses and advocates. Had the advocates been able to cross-
examine the expert witnesses more effectively, to expose the weakness of the opinion, these 
injustices might not have happened. In addition, addressing shortcomings at pre-trial stage 
may be even more effective, precluding the introduction of the evidence of the expert at trial. 

This issue is being noticed by the media. The economist and journalist, Tim Harford, set out the 
challenges for advocates in a 2015 article for the Financial Times, ‘Making a Lottery out of the 
Law’. He ends by saying: 

Of course, it is the controversial cases that grab everyone’s attention, so it is 
difficult to know whether statistical blunders in the courtroom are commonplace 
or rare, and whether they are decisive or merely part of the cut and thrust of legal 
argument. But I have some confidence in the following statement: a little bit of 
statistical education for the legal profession would go a long way. 

The legal profession is aware of the importance of training in the understanding of statistics 
and probability. The Law Commission identified one of the main challenges faced by 
advocates as follows: 

…cross-examining advocates tend not to probe, test or challenge the underlying 
basis of an expert's opinion evidence but instead adopt the simpler approach of 
trying to undermine the expert's credibility. Of course, an advocate may cross-
examine as to credit in this way for sound tactical reasons; but it may be that 
advocates do not feel confident or equipped to challenge the material 
underpinning expert opinion evidence. 

References 
Tim Harford ‘Making a Lottery out of the Law’, Financial Times (London, 30 January 2015) 

Law Commission, Expert Evidence in Criminal Proceedings in England and Wales  (Law Com No. 325, 2011) para 1.21 
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Refresher: The Statistician’s Toolbox 

Statistics provides a set of tools to address questions and answer problems. These tools are 
typically applied in a process of collecting and analysing data and then presenting and 
interpreting information. 

Here’s a reminder of some basic principles and key terms for describing information and 
measurements. See also Section 2: Key concepts in statistics and probability and 
resources to improve your understanding that are listed in Further resources. 

Data is information about a subject of interest (for example, heights in a population) which can 
come in different forms. It can be quantitative (numerical) or qualitative (descriptive) ‒ for 
example, the answers to interview questions. The important point about data is that for it to be 
of value to your case the data needs to reflect what you need to know. For example, data on 
the number of people with ponytails will not help you determine the number of people with 
‘long’ hair. It is not a very good indicator of what amounts to or constitutes long hair or how 
prevalent it is. You would need to find a stronger measure of long hair such as ‘hair over a 
predefined length measured from a particular point on the head’. 

Ideally, if you want to know, say, the average height of a person in London, not only would you 
want to be sure how effectively the measuring was done, you would also want to collect 
information or data on everyone. Collecting data on everyone happens, for example, when we 
conduct a census. We can then make statements directly about a population - for example, 
its average age. 

Generally, we can only estimate a particular characteristic or variable in the entire population 
because it is impractical or impossible to collect information on every instance. Rather we take 
a sample of the population we want to know about. We also want the sample to reflect the 
diversity of that population. In other words, the sample needs to be representative. There are 
techniques for ensuring this, and random sampling is important within this. See 2.2 Inferential 
statistics and probability. 

Descriptive statistics 

Descriptive (or summary) statistics illustrate different characteristics (or parameters) of a 
particular sample or population. It is useful to be familiar with some simple summary statistics 
of numerical data, particularly those that measure the ‘central tendency’ or average value, and 
those that measure how dispersed those data are. 

The mean (or arithmetic mean) is the most commonly used ‘average’. It is calculated by 
adding up the value of all the numbers reflecting a particular variable, and then dividing that 
sum by the total of all the numbers. For example, the mean of heights 68, 69, 71, 73, 73, 74 and 
75 inches is 71.9 inches. The mean of hourly pay rates £7.85, £8.14, £12.69, £17.02, £18.21, £21.82 
and £85.75 is £24.50. The mean is a sensible summary for data sets which are roughly 
symmetrical (have a similar number of data points above and below the mean), like height, but 
unlike pay. 

The standard deviation (SD) is the most common measure of the spread or variability of a 
dataset. It provides a measure of how far, on average, different variables are from the mean. It 
provides a measure of relatively how much the data clusters around the mean, or whether the 
values are widely dispersed. The larger the standard deviation, the more spread out the data. 
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The calculation of standard deviation is different for data from a population than from a 
sample. The sample standard deviation of the heights in the example given above is 2.6 inches. 

The range is the difference between the highest and lowest value in any distribution, and can 
be affected by some extreme values (or outliers). The range for hourly pay in the example 
given above is the difference between £7.85 and £85.75, namely £77.90. Giving the minimum 
and maximum values to describe the range adds clarity. 

The median is the middle number of the list which is created when you arrange numbers (or 
values) in order. When data are skew, that is, the data are not evenly distributed around the 
mean, such as the pay example in which 6 of 7 values are less than the mean, the median, 
£17.02, is a useful figure to use to describe the data; it is more typical. (If a list has an even 
number of values, then the median is calculated as being midway between the two middle 
numbers.) 

The interquartile range (IQR) is an estimate of the middle 50% of the data. It is a sensible 
measure to use with a median, with both quartiles also stated, and is a more stable measure of 
spread than the range, since it excludes the extremes. For hourly pay, the IQR is the difference 
between £10.42, the lower quartile, and £20.02, the upper quartile - that is, £9.60. 

The mode is the most frequent number. If seven employees take 0, 0, 0, 0, 1, 2 and 33 days of 
sick leave in a year, the mode is 0 days. The frequency of 0 days is 4, or 57% of the sample. 
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Section 1: Statistics and Probability in Law 

In this section, we look at examples of statistics and probability issues that may arise, or have 
arisen, in legal cases. 

1.1 Misunderstandings of probability 

The misuse of basic probability concepts (such as those in 2.1 Basic probability) can lead to 
errors of judgement and bad decision-making. 

Subjective probabilities 

In 1964, a woman was pushed to the ground in Los Angeles, and her purse snatched. A witness 
reported a blond-haired woman with a ponytail, and wearing dark clothing, running away. The 
witness said she got into a yellow car driven by a black man with a beard and moustache. In this 
famous case, a couple were convicted of the crime. 

The prosecutor’s expert witness, a maths professor, set out the respective probabilities for 
each of the characteristics and, multiplying each of those respective probabilities together, 
asserted a probability of 1 in 12,000,000 of any couple at random having them all. 

Party yellow automobile: 1 in 10 

Man with moustache: 1 in 4 

Girl with ponytail: 1 in 10 

Girl with blond hair: 1 in 3 

Black man with beard: 1 in 10 

Interracial couple in car : 1 in 1000 
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Koehler (1997) shows that this result was overturned on appeal on four grounds. Two of these 
reasons are dealt with in 1.3 Independence and 1.7 Prosecutor’s fallacy and defence 
fallacy. The other two were first, that these were subjective estimates; and secondly that they 
did not account for the possibility that either or both of the suspects were in disguise. The air of 
certainty created by using numbers and mathematical formulae can sometimes blind people 
to ask searching questions. 

Probability of the same thing happening again 

Even if a fair coin comes up heads three times in a row, the probability that we get a head the 
next time is unaffected. It is still 50/50. The previous coin throws do not affect the outcome of 
subsequent coin throws. Even such basic misunderstandings of probability can occur in expert 
presentation of evidence, and may be prejudicial. See 1.3 Independence for more. 

References 

CGG Aitken, ‘Interpretation of evidence and sample size determination’ in Joseph L Gastwirth (ed), Statistical 
Science in the Courtroom (Springer-Verlag 2000) 1–24. 

Jonathan J Koehler, ‘One in millions, billions and trillions: lessons from People v Collins (1968) for People v Simpson 
(1995)’, (1997) 47 Journal of Legal Education 214 

Ross v State (1992) B14-9-00659, Tex. App. 13 Feb 1992 

1.2 Coincidences and patterns 

We all tend to create patterns out of random information, or believe things are connected if 
they occur simultaneously. In legal cases, examples of miscarriages of justice have arisen from 
these ‘cognitive biases’. Sometimes what looks like a pattern is just a coincidence. 

A well-known example of an accusation of guilt being built up from coincidences, is that of 
Lucia de Berk, a Dutch paediatric nurse. It was alleged that her shift patterns at work coincided 
with the occurrences of deaths and unexpected resuscitations, and that the probability of this 
occurring by chance was 1 in 324 million. She was sentenced to life imprisonment in 2003 for 
four murders and three attempted murders. The High Court of The Hague heard an appeal in 
2004 where it upheld the convictions and also found her guilty of three additional counts of 
murder, bringing the total to seven murders and three attempted murders. 

At the initial trial, evidence was produced that in two cases she had administered poison to the 
victims. Dutch case law allows for ‘chain evidence’ to be used, where evidence of one offence 
can be used to support the case for a similar offence. In other words, if some murders have 
been proved beyond reasonable doubt (in this case by poison) weaker evidence is sufficient to 
link other murders.1 

The expert witness who calculated the 1 in 324 million figure had not used the correct method 
to bring together the probabilities of each separate incident, had incorrect data on de Berk’s 
shift patterns, and had made assumptions that may not be reasonable – for example, 
assuming that all shift patterns are equally likely to have an incident occurring whether in 
summer or winter, day or night (Meester et al., 2006). Making allowances for natural variations 
(heterogeneity), statisticians Richard Gill (who pushed for a retrial), Piet Groeneboom and 

 
1  In English law, the admissibility of previous behaviour or alleged behaviour as evidence relevant to the defendant’s propensity to 

commit the offence charged is governed by section 101 of the Criminal Justice Act 2003. 
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Peter de Jong calculated an alternative chance of 1 in 26 that an innocent nurse could 
experience the same number of incidents as Lucia de Berk (Gill et al., 2010). 

The Commission for the Evaluation of Closed Criminal Cases (Commissie Evaluatie Afgesloten 
Strafzaken – CEAS) reviewed the case and reported to the Public Prosecution Service 
(Openbaar Ministerie) in 2007. 

They concluded that the case had been affected by ‘tunnel vision’ (in other words, seeking 
confirmatory evidence by initially focusing only on deaths that could involve Lucia de Berk, and 
not sufficiently considering alternative scenarios), and cast doubt on the evidence of 
poisoning of one child, suggesting that test results had been misinterpreted. 

As a result of the review, the case was reopened, with further investigation and a retrial. It was 
subsequently shown that both alleged cases of poisoning were not supported, and de Berk was 
not on the premises for two of the alleged murders. Apparently, the overall number of deaths 
at that particular medical unit was also higher before she started working there. In April 2010, 
the appeals court in Arnhem ruled that there was no evidence that Lucia de Berk had 
committed a crime in any of the 10 cases, and she was acquitted. 

Three plane crashes happened in an eight-day period in July 2014. Do you think this is 
suspicious? 

Unpicking whether a set of events is a coincidence or not is not straightforward. We can start 
by considering the probability of the set of events occurring naturally (i.e. coincidentally), and 
then consider the probabilities of other explanations. 

For the plane crashes, David Spiegelhalter, Professor for the Public Understanding of Risk at 
the University of Cambridge, has calculated that the chance of at least three crashes in an 
eight-day window is very small - around 1 in 1000 (Spiegelhalter 2014). But the right question to 
ask is whether such a 'cluster' is surprising over a longer period of time. He found that the 
probability of such a cluster of plane crashes within a 10-year period was about 60 per cent – 
i.e. more likely than not. It is not sufficient simply to identify this cluster to say that it is a 
suspicious pattern, rather than simply a chance event. 

A 60 Second Science podcast ‘Brain Seeks Patterns where None Exist’, in Scientific American, 
in 2008, shows that people tend to see non-existent patterns. However, this ‘cognitive bias’ 
seems to be reduced if you are relaxed. 

Kim Rossmo wrote in The Police Chief that: “Efforts to solve a crime by ‘working backwards’ 
(from the suspect to the crime, rather than from the crime to the suspect) are susceptible to 
errors of coincidence. These types of errors are often seen in the ‘solutions’ to such famous 
cases as Jack the Ripper.” The Lucia de Berk example also shows our tendency to link things 
together and create causal stories, as well as the need to carefully question when others might 
be doing the same. 

It’s also important to consider the difference between the probability of a specific coincidence 
occurring, as opposed to the probability of any coincidence occurring within a group of events. 

The probability of two people in a room of 30 sharing a birthday is approximately 0.71 - i.e. just 
over a 7 in 10 chance of it happening. In other words, it is more likely to happen than not. 

If you are one of the 30 people in the room, the probability of any of the other 29 having the 
same birthday as you is approximately 0.08. That’s less than one in ten chance of it 
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happening.2 In the first case, we are calculating the probability of a coincidence of the type of 
‘one person and another person share a birthday’, in a group where there are many possible 
birthday pairings. In the second case, we are looking for a specific case of a pair where one of 
the pair is you. 

A statistician can provide information to help the court understand the circumstances of the 
situation as it relates to the prosecution proposition and the defence proposition. It is not for 
the statistician to rule whether a set of events is a coincidence or not, guilt or not; that is for the 
court. 

References and further reading 

Richard D Gill, Piet Groeneboom and Peter de Jong, ‘Elementary Statistics on Trial (the case of Lucia de Berk)’ 
(Richard D Gill, 2010) <www.math.leidenuniv.nl/~gill/hetero6.pdf> accessed 5 October 2017 

Ronald Meester, Marieke Collins, Richard Gill, Michiel van Lambalgen, “On the (ab)use of statistics in the legal case 
against the nurse Lucia de B.” (2006) 5 Law, Probability and Risk 233 

Openbaar Ministeriem, ‘Rapport Commissie evaluatie afgesloten strafzaken inzake mevrouw de B.’, 29 October 
2007. 

D. Kim Rossmo, ‘Failures in Criminal Investigation’ The Police Chief (October 2009) 54 

Scientific American, ‘Brain Seeks Patterns where None Exist’ (Scientific American, 3 October 2008) 
<www.scientificamerican.com/podcast/episode/brain-seeks-patterns-where-none-exi-08-10-03/> accessed 5 
October 2017 

David Spiegelhalter, ‘Another tragic cluster - but how surprised should we be?’ (Understanding Uncertainty, 25 July 
2014) <https://understandinguncertainty.org/another-tragic-cluster-how-surprised-should-we-be> accessed 5 
October 2017 

1.3 Independence 

If the occurrence of an event has no effect on the probability of another event then the two 
events are said to be independent. There is no relationship between them. Where the 
outcomes are independent you can multiply the associated probabilities together to get the 
probability of the two outcomes occurring. But if the outcomes are related or dependent you 
cannot do so. Note that the relationship may not be obvious. Many pairs of outcomes that look 
independent are not (see 2.1 Basic probability for a further explanation). 

A variable is a statistical term that refers to a quantity that could in principle vary or differ – for 
example, height of one person over different times of the day, or height of different people 
across a population. An event is an outcome that can either happen or not. Variables and 
events can both have a quality called independence. 

In the case of the theft of the purse in Los Angeles described in 1.1 Misunderstandings of 
probability, the expert witness multiplied individual probabilities together to get 1 in 
12,000,000 as the probability of any couple at random having all of six characteristics, such as 
“girl with blond hair” and “man with moustache”. Some of the stated identifiers are related and 
so cannot be multiplied together. In overturning the conviction, the Californian Supreme Court 
pointed out that since many black men have both beards and moustaches (including the 
defendant), there was “no basis” for multiplying the probability values for black men with 
beards and men with moustaches as these are not independent (People v Collins, 1968). 

 
2  For a full explanation of the mathematics of this, see https://www.mathsisfun.com/data/probability-shared-birthday.html for an 

illustrated example 
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Sally Clark, a British solicitor, was convicted in 1999 of murdering two of her sons. One died 
shortly after birth in 1996, and another in 1998. The prosecution case included flawed 
statistical evidence given by an expert witness paediatrician who asserted that the chance of 
two children from a professional non-smoking family dying from Sudden Infant Death 
Syndrome (SIDS) was 1 in 73 million. 

The figure of 1 in 73 million relied on a report which concluded that the possibility of a single 
SIDS in a similar family to Clark’s was 1 in 8,453. To reflect the two deaths, this probability was 
then squared to reach 1 in 73 million. The witness had presumed that each death was 
independent of the other and therefore multiplied the associated fractional probabilities of 
each death. The assumption of independence is not correct since there was evidence 
available that other factors, genetic or environmental, could have affected both children. 

A second appeal in 2003 overturned the conviction when it was found that there had been a 
failure to disclose medical reports suggesting that the second son had died of natural causes. 
After her release, Sally Clark developed severe psychiatric problems and died from alcohol 
poisoning in 2007. 

As the RSS said about the case of Sally Clark: “The calculation leading to 1 in 73 million is invalid. 
It would only be valid if SIDS cases arose independently within families, an assumption that 
would need to be justified empirically.” (Green 2002). In general, “independence must be 
demonstrated and verified before the product rule for independent events can safely be 
applied” (Aitken et al. 2010). 

The Law Commission (2011) considered the Sally Clark case when recommending reforms for 
managing expert witnesses and said that if its reforms had been in place: “the trial judge would 
have ruled on the scope of the paediatrician’s competence to give expert evidence and would 
have monitored his evidence to ensure that he did not drift into other areas.” It added: “The 
paediatrician would not have been asked questions in the witness box on matters beyond his 
competence; and if he was inadvertently asked such a question… the judge would have 
intervened to prevent an impermissible opinion being given”. 

Additionally, if the Commission’s reforms had been in place, the “defence or court would 
presumably have raised the matter as a preliminary issue in the pre-trial proceedings and the 
judge would no doubt have directed that the parties and their experts attend a pre-trial 
hearing to assess the reliability of the figure… The reliability of the hypothesis (or 
assumption)… would then have been examined against our proposed statutory test, examples 
and factors. The expert would have been required to demonstrate the evidentiary reliability 
(the scientific validity) of his hypothesis and the chain of reasoning leading to his opinion, with 
reference to properly conducted scientific research and an explanation of the limitations in 
the research findings and the margins of uncertainty...” 

The Law Commission believed that, had this approach been followed, it “would probably have 
provided a distinct basis upon which to quash C’s [Clark’s] convictions” and that if a 
competent statistician had provided a more “reliable figure as to the probability of two SIDS 
deaths in one family… under our recommendations that expert would have been expected to 
try to formulate a counterbalancing probability reflecting the defence case.” 

Note that the Law Commission’s reforms have not been implemented in the form proposed by 
the Commission. See Section 4: Current and future issues for discussion. 
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1.4 Absolute and relative risk 

Risk has different meanings or interpretations, depending on the legal, professional or social 
context. In finance, for example, risk may be shorthand for potential financial loss, or financial 
volatility. In everyday language, risk usually refers to the possibility of an outcome that is 
negative. In statistics, risk usually refers to the probability that an event will occur. This may be 
a good or a bad event. In epidemiology, risk usually denotes a measure of disease frequency 
(see definition of relative risk below). 

Relative risk (RR) describes the proportional increase in the probability of an effect of an 
event occurring to a group, as measured from a baseline of a comparison group that has not 
experienced the event. The important point to take from this definition is that a statistical 
result can only properly be expressed in the form of a relative risk if it derives from a study in 
which one group with the relevant characteristic is compared with a control group over a 
specified period of time. The characteristic being studied may relate, for example, to the onset 
of a particular disease or to exposure to a harmful agent such as asbestos. That the ‘RR’ label 
can only attach to results stemming from rigorously implemented studies of this nature is a 
point that cannot be stressed enough. It should be borne in mind when looking at recent toxic 
tort cases. Questions to consider include: what is the source of the statistical figures being 
relied upon as indicators of factual causation? Is there a scientific basis for them? Are the 
studies relied upon relevant to the claimant in terms of age, gender and lifestyle? What 
generalizations have been made and are they tenable? 

Absolute risk (AR) describes the overall risk to a population (or any other category) of an 
event – the probability of the event happening to any one member of the population. As such, 
it is not a term of art in the same way as relative risk. Indeed, it will often be the case that this 
statistic will have been extrapolated from an epidemiologic RR study. When assessing the 
relevance and reliability of such a statistic as regards the legal issue at stake, it will be of vital 
importance to look to the source of the information on which the AR calculation has been 
based. For instance, if the study in question was designed to measure the prevalence of lung 
cancer in women smokers aged between 25 to 40 years, it will not be relevant to a claimant 
who is male and/or a non-smoker. The smaller the study, the harder it will be to draw 
generalisations from it. In terms of assessing the scientific reliability of the data, obvious 
factors to look at will include the size of the P value (see 2.3 The scientific method) or 
confidence interval (see 2.2 Inferential statistics and probability), and the measures taken 
to guard against biases (for example, bias in the selection of cases for a study) and 
confounders (see the ice cream and sunglasses example in 1.5 Correlation and causation 
below). 

Consider the following example. If you read: “People who use sunbeds are 20% more likely to 
develop malignant melanoma”, this relates to the relative risk of developing cancer (assuming 
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it derives from a reliable epidemiologic study with the all-important control group). This 
percentage on its own does not tell us what the overall likelihood is of developing this kind of 
cancer ‒ in other words, the absolute risk. 

Cancer Research UK has usefully explored the importance of understanding these differences. 
Williams (2013) noted that The Guardian reported a 70% increase in thyroid cancer amongst 
women after the Fukushima nuclear disaster in 2011. This is a relative risk. A 70% increase 
sounds alarming – but it does not tell us what proportion of the population would be affected. 
The Wall Street Journal reported that the absolute risk of this cancer was low (about 0.77% - 
that’s seventy-seven out of ten thousand people). A 70% increase in risk would take it to an 
incidence of 1.29 per cent in the population. That increase in absolute risk is 0.52 percentage 
points. For a population of 10,000, an extra 52 people would be affected. Expressing these 
changes in absolute risk allows for fair comparisons between different activities. For example, 
if another (fictitious) cancer had increased by 35% after Fukushima, but had an existing 
absolute risk of 2%, then the second cancer would have an extra 70 cases in 10,000 (from 200 
per 10,000 to 270 per 10,000). In this example, although the change in relative risk was smaller 
(35% rather than 70%), the overall effect on the population was larger (an extra 70 cancer 
cases compared with an extra 52 cancer cases). 

The important point to take away from the above example is that the same raw data can be 
used to make a number of different statistical calculations and so, when you are looking at 
expert evidence involving statistical results, you will need to know what calculations have been 
made and be able to explain the specific nature of the risk being presented. You will need to be 
able to determine at the case management stage the relevance and significance, or lack 
thereof, of the calculations to the specific legal issues you are dealing with. 

References and further reading 

Choudhury v South Central Ambulance Service NHS [2015] EWHC 1311 (QB) (an example of incorrect use of the 
technical term ‘relative risk’.) 

Sarah Williams, ‘Absolute versus relative risk – making sense of media stories’, (Cancer Research UK, 15 March 2013) 
<http://scienceblog.cancerresearchuk.org/2013/03/15/absolute-versus-relative-risk-making-sense-of-media-
stories/> accessed 5 October 2017 

1.5 Correlation and causation 

Complex phenomena with multiple potential relationships and impacts are sometimes 
explored by looking at correlations between variables rather than conducting an experiment 
(see 2.3 The scientific method). This ‘observational’ method is used quite often in medicine 
to observe or indicate a link between various variables. It does not ‘prove’ causation but can be 
highly indicative of a relationship and lead to further research to determine causal 
mechanisms. 

In 1965, an expert witness told a US Senate committee hearing that even though smoking might 
be correlated with lung cancer, any causal relationship was unproven as well as implausible. 
This followed the 1964 Report on Smoking and Health of the Surgeon General, which found 
correlations between smoking and chronic bronchitis, emphysema, and coronary heart 
disease.3 

 
3  See U.S. National Library of Medicine, ‘The Reports of the Surgeon General: The 1964 Report on Smoking and Health’ (Profiles in 

Science, undated) <https://profiles.nlm.nih.gov/ps/retrieve/Narrative/NN/p-nid/60> accessed 5 October 2017 
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This example might at first glance be seen to illustrate the mantra that – ‘Correlation does not 
equal causation’. However, it is important to realise that many medical studies are, in fact, 
based on correlations between variables since the underlying causal mechanisms are not yet 
fully understood. These are called epidemiological studies. 

The expert witness at the US Senate committee hearing on smoking, referred to above, was 
Darrel Huff. An esteemed populariser of statistics (see Further resources), he was not a 
qualified statistician. His testimony, and an unpublished book on the case for smoking, made 
statistical mistakes and did not look at the whole view (Reinhart 2014). 

 

Correlations can be measured by specific statistics which calculate the likely extent of the 
‘relationship’ between variables. An example is the Pearson Correlation Coefficient which 
calculates a number between -1 and +1 to describe the strength and form of the linear 
correlation. For example, +0.9 indicates a high positive correlation – as one value goes up, so 
does the other. If the result is 0, there is likely to be no linear relationship (although there may 
be another kind of relationship). If the coefficient is -0.5 there is a low negative correlation – as 
one value increases, the other decreases. 

The Pearson Correlation Coefficient works only for linear relationships. There might be a 
curved pattern or relationship which would not be picked up. The charts overleaf illustrate this: 

 

 

You have to be careful when considering correlation. Even if two variables seem to have a 
strong relationship, one variable may not in fact be the cause of another. This is what is called a 
‘spurious’ correlation. 

An amusing website by Tyler Vigen provides a range of examples, one of which, for example, 
shows that per capita US cheese consumption correlates with death from becoming tangled in 
bed sheets in the USA. The correlation coefficient is 0.95 which is quite high. Any such 
observed link might just result from two independent trends that are going in similar directions. 
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An observed correlation might also be caused by another or confounding variable that 
affects both. Consider this simple example of a plot of values of weekly ice cream sales against 
weekly values of sunglasses sales. 

Even if the sale of sunglasses and sales of ice cream seem to vary together, it is obvious that 
one does not cause the other. Rather, the weather causes changes in the sales of both. 

 

You cannot just dismiss correlations as not indicating a cause or direct link between two 
variables. It may not yet have been proven. A well-conducted statistical experiment can you 
give very convincing evidence of causation. Subsequent studies may provide further evidence 
for the hypothesis. In the case of smoking, for example, the links between smoking and lung 
cancer have been supported by subsequent experimental scientific studies as well as 
observational studies. 

You may need to probe further to see if there is evidence to explain the correlation – is it 
accidental, or an as yet unproven but strongly suggestive relationship, or is it just caused by 
something else? 
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Epidemiology and tort litigation 

Epidemiology is best understood as a public health science that looks at the causes and 
determinants of diseases in human populations. It is primarily used to help develop health 
strategies for general populations. A recent example of its application in a health policy context 
are the bans on smoking in public spaces across the UK owing to the various risks of harm 
associated with second-hand smoke. There is also a growing trend of using epidemiologic 
research in tort litigation where the actionable damage is a complex disease (i.e. a disease 
about which there are significant gaps in medical knowledge). The legal claims involved tend to 
fall into three categories: (1) toxic torts (where the disease allegedly results from exposure to a 
toxic substance); (2) medical negligence claims, e.g. where a doctor is sued for failing to 
diagnose the relevant disease in a timely fashion; and (3) pharmaceutical products liability 
under the Consumer Protection Act 1987. In the vast majority of these claims, the 
epidemiological evidence is used at the factual causation stage of the legal enquiry (although 
note that in product liability claims, it is also used to determine the whether the product is 
defective – see XYZ v Schering Health Care [2002] EWHC 1420 (QB)). 

The science of epidemiology is expressly concerned with probabilities. For this reason, it will be 
less often of use in criminal cases given the high standard of proof required, though relevant 
epidemiology might still properly provide support for the prosecution in, say, a medical 
manslaughter case if there is other evidence of guilt.4 In civil law, the balance of probabilities 
standard allows for more uncertainty than the beyond reasonable doubt standard of criminal 
law – the evidence presented need only persuade the court that it is more likely than not that 
the relevant legal issue (for present purposes, it is factual causation) has been established. 

Using epidemiology to decide questions of causation is controversial.5 The court in a toxic tort 
case is applying a statistical model derived from the epidemiology to the facts of a single case. 
In doing so the court is using epidemiological data for a very different purpose from that of the 
researchers. See further in Section 4: Current and future issues. 

Epidemiologists employ a variety of bespoke methodologies to collect and interpret data and 
the calculation of incidence and prevalence rates count among the most basic of these. 
Methods include ecological studies (comparing groups of people separated by time, location 
or characteristic), longitudinal or cohort studies (tracking groups of people over time), case-
control studies (examining the life histories of people with cases of disease), cross-sectional 
studies, performing experiments including randomised controlled trials, and analysing data 
from screening and outbreaks of diseases (see Coggon et al. for a description). The type of 
study can affect its accuracy and reliability. A longitudinal study can be prospective whilst a 
case-control study is retrospective. Retrospective studies are more prone to confounding and 
bias. 

If a statistically significant relationship is found between an agent and a health outcome, one of 
the methods subsequently used to determine whether that relationship is indicative of a 
biologically causal relationship is the Bradford Hill guidelines. 

 
4  And it might be deployed in such a case by the defendant on whom no burden of proof lies. 
5  Reservations about its use in tort litigation were recorded by members of the Supreme Court in Sienkiewicz v Greif (UK) Ltd 

[2011] 2 AC 229 though arguably some of the concerns are based on a misunderstanding of the methodologies used by 
epidemiologists to derive conclusions from datasets: see Claire McIvor, ‘Debunking some judicial myths about epidemiology and 
its relevance to UK tort law’ [2013] Medical Law Review 553 
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Bradford Hill guidelines 

Sir Austin Bradford Hill, in his President's Address in 1965 to the Section of Occupational 
Medicine of the Royal Society of Medicine, gave a list of aspects of association which could be 
useful in assessing whether an association between two variables should be interpreted as a 
causal relationship. These have become known in epidemiology as the Bradford Hill guidelines 
and are used in debates such as whether mobile telephone use can cause brain tumours. 

The aspects of association, or guidelines, are: 

 Ø Strength: the strength of the association, for example, the death rate from  
  lung cancer in smokers is ten times the rate in non-smokers, and heavy   
  smokers have a lung cancer death rate twenty times that of non-smokers. 

 Ø Consistency: if an association is repeatedly observed by different people, in  
  different places, circumstances and times, it is more reasonable to conclude  
  that the association is not due to error, or imprecise definition, or a false  
  positive statistical result. 

 Ø Specificity: consideration should be given to whether particular diseases only  
  occur among workers in particular occupations, or if there are particular causes 
  of death. This is a supporting feature in some cases, but in other cases one  
  agent might give rise to a range of reasons for death. 

 Ø Temporality: this requires causal factors to be present before the disease. 

 Ø Dose-response curve, or biological gradient: if the frequency of a disease  
  increases as consumption or exposure to a factor increases, this supports a  
  causal association. Increasing levels of smoking, or of exposure to silicon dust  
  associated with increased frequency of lung disease supports the hypothesis  
  that smoking or silicon dust causes lung disease. 

 Ø Plausibility: if the causation suspected is biologically plausible. However, the  
  association observed may be one new to science or medicine, and still be valid. 

 Ø Coherence: a cause and effect interpretation should not seriously conflict with 
  generally known facts of the development and biology of the disease. 

 Ø Experiment: sometimes evidence from laboratory or field experiments might  
  be available. 

 Ø Analogy: if there is strong evidence of a causal relationship between a factor  
  and an effect, it could be fair to accept “slighter but similar evidence” between  
  a similar factor and a similar effect. 

Hill himself was keen to stress that “none of my nine viewpoints can bring indisputable 
evidence for or against the cause-and-effect hypothesis and none can be required as a sine 
qua non” (Hill 1965). Conversely, if none of the guidelines is met, one cannot conclude that 
there is not a causal association. The conclusion is that there might be a direct causal 
explanation, or an indirect explanation, or even that the association arose from some aspects 
of data collection or analysis. Epidemiologists may also consider competing explanations, such 
as an unmeasured confounding factor, an alternative factor which has an association of similar 
strength to the putative causal factor. For example, high alcohol consumption is associated 
with lung cancer. As people who drink often also smoke, before no smoking areas were 
common, pubs were often full of smoke. One should consider if the effects of drinking and 
smoking can be distinguished. 



© 2019 The Council of the Inns of Court and The Royal Statistical Society – page 21 

References and further information 

D Coggon, Geoffrey Rose, DJP Barker, Epidemiology for the uninitiated, (Fourth edition, BMJ Books). Available online 
at www.bmj.com/about-bmj/resources-readers/publications/epidemiology-uninitiated 

N Duan, RL Kravitz, CH Schmid. ‘Single-patient (n-of-1) trials: a pragmatic clinical decision methodology for patient-centered 
comparative effectiveness research’ (2013) 66(8 0) Supplement Journal of Clinical Epidemiology 21 Author manuscript 
available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972259/ 

Austin Bradford Hill, ‘The Environment and Disease: Association or Causation?’ [1965] Proceedings of the Royal 
Society of Medicine 295 

Claire McIvor, ‘Debunking some judicial myths about epidemiology and its relevance to UK tort law’ [2013] Medical 
Law Review 553 

Rod Pierce, ‘Correlation’ (Math Is Fun, 27 Jan 2017) <www.mathsisfun.com/data/correlation.html> accessed 6 
October 2017 

Alex Reinhart, ‘Huff and puff’ (2014) 11(4) Significance 28 

Sienkiewicz v Greif (UK) Ltd [2011] UKSC 10; [2011] 2 AC 229 

Tyler Vigen, 'Spurious Correlations' (Spurious Correlations, undated) <http://tylervigen.com/spurious-correlations> 
accessed 12 October 2017 

For more on smoking, correlation and causation, see the Financial Times article Cigarettes, damn cigarettes and 
statistics by Tim Harford (10 April 2015), which shows how evidence of causality in relation to the impacts of cigarette 
smoke on health was built over time from correlation, through the timing of effects and relative dose and impact 
levels. 

1.6 False positives and false negatives 

Tests are often used in forensic science and medicine to determine whether a person has a 
particular characteristic, such as a blood type or an illness. Forensic tests may be carried out, 
for example, on products such as food, or other consumer goods, or construction materials. 
Like any measurement process, they are subject to error which can arise from many sources − 
bias, inappropriate calibration, human error mixing samples, and random variation. It is 
important to know what this error might be, since a test, say for evidence, might incorrectly 
identify a match when there isn’t one, or alternatively not identify a match when there is one. In 
relation to medicine, a test for cancer might not show it is there when it is or, alternatively, 
might identify cancer when it is not there. 

In 2003, a student was arrested in Philadelphia airport. Her luggage contained three condoms 
filled with a white powder which a field test indicated was cocaine. The student argued that 
these were flour and she used them as stress relief toys for exams. She spent the next three 
weeks in jail on drug charges until an attorney encouraged the state prosecutor to arrange 
laboratory testing. The tests confirmed that the powder was flour. Ultimately, she was awarded 
$180,000 compensation by Philadelphia. She had been arrested and held in jail on a ‘false 
positive’ result. 

With scientific or medical tests, a false positive result is one in which the test gives a positive 
result indicating the presence of the substance or disease for which the test was conducted 
when, in reality, that substance or disease is not present. A false negative result is one in which 
the test gives a negative result indicating the absence of the substance or disease for which the 
test was conducted when in fact the substance or disease is present. 

The rates of false positives and false negatives (a measure of the reliability of the testing 
procedure) can be used to assign probabilities of observing false positives and false negatives 
as if the tests were applied across a population. Even very reliable tests (those with a low false 
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positive rate) could lead to declared matches being false for many test results. This example 
illustrates this. 

Imagine 1000 people. 10 have a disease (a prevalence of 1%). 990 don’t have the disease. All 
1000 people are tested for that disease at the same time. The test used is known to have a 
false positive rate of 10% and a false negative rate of 20%. A false negative rate of 20% means 
that of those 10 with the disease, only 8 are correctly identified as having the disease. The false 
positive rate of 10% means that this test will identify wrongly 10% of those 990 who do not have 
the disease as having the disease. At the end of the test across all 1000 people, we are 
therefore left with 107 people testing positive (8 + 99), but only 8 need treatment (that’s about 
7% of 107); and 2 out of 893 need treatment but are not going to get it. This table summarises 
these figures: 

 Have illness Don’t have illness Totals 
Positive test result 8 99 107 
Negative test result 2 891 893 
Totals 10 990 1000 

 

Doctors have had their understanding of false positive and false negative rates tested by being 
presented with the above information on the false positive rate and false negative rate, and 
being asked: “If 1% of the population have the illness and you get a positive result, what are the 
chances you have the disease?” In a scenario such as the one above, the doctors often 
returned an answer of about 80%. As you can see above, that is wrong; it is about 7% (i.e. 8 
divided by 107). 

The doctors answering 80% were focusing only on whether having the illness would give you a 
positive test result, or not. The fact that 80% of people with the illness get a positive test result 
is not the same as saying that 80% of people with positive results have the illness. 

1.7 Prosecutor’s fallacy and defence fallacy 

These two misunderstandings of probability have received much attention in legal circles. 
They are important to understand since they can lead to incorrect interpretations of evidence 
or probability. 

This is an area where it is worth spending a little time getting the issues clear in your head since 
the results can be counter-intuitive. You need to be aware how easily many people, including 
experts, can misinterpret what is being said. 

Both the prosecutor’s fallacy and the defence fallacy incorrectly value probabilistic evidence, 
in part because alternative explanations are ignored. We discuss them separately here due to 
the burden of proof. The prosecutor’s aim is to prove guilt beyond reasonable doubt. The aim 
of the defence is to raise reasonable doubt. Note though, that the names are misleading – 
either party in court, or an expert witness, may commit either fallacy. 

The prosecutor’s fallacy 

The prosecutor’s fallacy confuses the probability of finding the evidence on an innocent 
person with the probability that a person on whom the evidence is found is innocent.6 This can 

 
6  This is technically known as transposing the conditional, i.e. swapping over what is assumed or given. 



© 2019 The Council of the Inns of Court and The Royal Statistical Society – page 23 

equate to assuming that the probability of the scientific evidence (the match) given the 
defendant is innocent is equal to the probability that the defendant is innocent. 

An example illustrating this, attributed to John Maynard Keynes, and discussed in Balding and 
Donnelly (1994) is as follows. You are playing poker against the Archbishop of Canterbury. On 
the first hand, he deals himself a straight flush.7 There are two questions you might ask at this 
point: 

 1. What is the probability of the Archbishop dealing himself a straight flush (the  
  evidence) if he were playing honestly (i.e. innocent)? 

 2. What is the probability that the Archbishop is playing honestly (i.e. innocent),  
  given that he has dealt himself a straight flush (the evidence)? 

2,598,960 five-card hands can be dealt from a pack of 52 cards, of which 36 hands would be a 
straight flush. This means the answer to the first question is 36 in 2,598,960, or about 1 in 
72,000. For the second question, most people would assess the probability of the Archbishop 
of Canterbury’s honesty, even with the evidence that has dealt himself a straight flush, as being 
close to 1. The prosecutor’s fallacy would be to argue that the probability of the Archbishop 
playing honestly given that he has dealt himself a straight flush, is 36 in 2,598,960. 

To quote Balding and Donnelly (1994): 

…it is possible for the two questions to have very different answers. In particular a 
very small answer to the first question does not necessarily imply a small answer 
to the second question. 

The defendant is on trial for having fraudulently won the lottery by invisibly hacking into the 
lottery computer in such a way that it produced his number as the winning ticket. He denies 
any such conduct. The prosecution states that as the probability of winning is one in 20 million, 
then the probability of innocence is one in 20 million. This is a clear example of the 
prosecutor’s fallacy. 

Guidance for expert witnesses, particularly in forensics, encourages experts not to make such 
claims in written statements. However, particularly in cross-examination, or in questions to 
experts, in an attempt to simplify or summarise the evidence given, the fallacy may arise. 

R v Doheny 
An example of the prosecutor’s fallacy was elicited from an expert witness in R v Doheny. 
Doheny was accused of raping a woman in her home. She had not seen her attacker’s face. The 
only physical evidence was semen stains found on her clothing. An expert presented evidence 
of an analysis of the DNA of the semen stain and blood group information obtained from the 
semen stain, and DNA and blood group information from Mr Doheny. In court, he was asked 
about the match probability of the DNA evidence combined with blood group evidence. His 
response was: “taking them all into account, I calculated the chance of finding all of those 
bands and the conventional blood groups to be about 1 in 40 million”. This probability is the 
probability of finding that set of DNA and blood type in the general population. 

He is then asked by the prosecution: “The likelihood of it being anybody other than Alan 
Doheny?” He answered, “Is about 1 in 40 million”. 

Here, the expert is being asked, what is the probability that Doheny is not the source of the 
semen, given the matching DNA profiles and blood type? He implicitly reverses the conditional 

 
7  Five cards of the same suit in sequence. An ace-high straight flush is known as a Royal flush and is excluded from the straight 

flush figure above. 
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when he answers: “Is about 1 in 40 million.” The question posed by the prosecutor was a 
leading one, and elicited the prosecutor’s fallacy. The appeal was allowed. The Court of Appeal 
in R v Doheny and Adams stated that an expert “should not be asked his opinion on the 
likelihood that it was the defendant who left the crime stain, nor when giving evidence should 
he use terminology which may lead the jury to believe that he is expressing such an opinion.” 

Instances of the prosecutor’s fallacy can be subtle. Consider these two sentences, where 
‘match’ refers to an agreement between a DNA profile obtained from a defendant, and a DNA 
profile obtained from the evidence: 

 A. “The probability of a match if the semen came from another person is one in a  
  billion.” 

 B.  “The probability that the semen came from another person is one in a billion.” 

This second sentence is an example of the prosecutor’s fallacy. 

The first sentence is interpreted by statisticians as a statement about the evidence, 
specifically the probability of the evidence of a match given the proposition that the semen 
came from some person other than the defendant. It answers the question, “Assuming the 
defendant is innocent, what would be the probability of finding this match?” 

The second is interpreted by statisticians as a statement about the defendant, specifically the 
probability of the proposition that the semen came from some person other than the 
defendant (the probability that the defendant is innocent), given the evidence of a match. It 
answers the question, “Assuming the match has been made with the defendant, what is the 
probability of his innocence?” 

The prosecutor’s fallacy is not just an issue to look for in criminal cases; it could occur in any 
area of law where evidence may be given an approximate probability by an expert. 

The defence fallacy 

If a prosecution lawyer argued that on the basis of the probability value for an evidence match, 
the probability of this person being innocent is so low that there is therefore a huge implication 
of guilt, that would be to commit the prosecutor’s fallacy. 

If the defence uses the probability value for an evidence match (e.g. one in a million people) to 
argue that for a large enough population (for example, of the UK), their client is only one of 
many people that could be guilty, and is thus innocent due to reasonable doubt, then they are 
committing the defence fallacy (sometimes referred to as the defense attorney's fallacy). 

Imagine a case in which a partial DNA profile has been obtained from a crime sample. The 
partial profile matches the equivalent parts of the defendant’s profile. The random match 
probability is given as 1 in 10,000. Given the circumstances of the crime, e.g. geography, eye 
witness description of the offender etc., both defence and prosecution agree that the size of 
the population of potential sources for the crime sample is 100,000, the defence could argue 
that the defendant is only 1 of probably 10 matching sources. The probability therefore that he 
is the source is only 10%. The problem with this inference is that it assumes equal prior 
probability of being the source for all 100,000 of the potential sources. Almost certainly, most 
of the 100,000 potential sources will have different prior probabilities because of their own 
particular circumstances, such as motive, age or alibi. 
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A worked example of the prosecutor’s fallacy and defence fallacy 

The following example should make these two misunderstandings clearer. There are 10,000 
people in a population, and one of these is guilty of a crime. A blood stain left by the criminal 
has specific antigens found in 1 in 1000 people. 

 Match No Match Total 
Guilty 1 0 1 
Innocent 9 9,990 9,999 
Totals 10 9,990 10,000 

 

The table above of the different outcomes shows the probability that an innocent person 
chosen at random has the same specific blood antigens is 9/9999 = 0.0009 – the number of 
innocent matches divided by the total number of innocent people. (Of course, if the antigens 
did not match, the person would be excluded from suspicion.) This is not the same as the 
probability of being innocent given that you match the evidence. (It is also very similar to the 
probability of getting a match in the general population which is 10/10,000 ‒ a number which 
could have been determined through scientific studies of a population where no-one is guilty. 
See Random match probability in 1.8 Expert opinion evidence.) 

The probability of being innocent given that you match the evidence is 9/10 = 0.9 or 90%. It is 
the number of innocent matches divided by the total number of matches in a population. This 
probability might therefore be used to imply a high probability of innocence. The defence 
could use it to try to show that it was unlikely that this person could be guilty. However, this 
argument is the defence fallacy. Note that the probability statement is true. The fallacy lies in 
attempting to use this probability to over-ride other evidence in the case. 
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1.8 Expert opinion evidence 

Most of the analysis of the relationship between probabilistic reasoning and expert opinion 
evidence has been done with respect to DNA evidence. However, expert opinion evidence can 
include fingerprints, ballistics, or trace evidence such as fibres or firearm residues, as well as 
epidemiological data. Different expert opinion evidence needs to be treated on its own terms, 
since the underlying science and tests or available comparative databases are not 
comparable. 
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Nevertheless, the fundamental issues of probability logic and inference are common to all 
such evidence. 

Experts should think and act logically, providing opinion that is justifiable and robust. It is useful 
for lawyers to understand that the opinions offered by forensic scientists can be separated 
broadly into two basic types, depending on the type of question that is being asked 

When questions are related to the circumstances of a crime or the type of offender who might 
have committed it, forensic scientists will be forming and providing ‘investigative’ opinions. In 
this mode, the forensic scientist is seeking explanations by generating hypotheses from 
preliminary observations (at, for example, a scene of crime) and then refining these after 
obtaining further observations. When operating in this way, forensic scientists follow the 
classic scientific method (see 2.3 The scientific method). 

In contrast, in those situations where there is a pair (or set) of competing propositions, usually 
relating to the defendant, forensic scientists will be operating in ‘evaluative’ mode. The 
scientist will offer the court or tribunal an assessment of the probabilities of the observations 
given the truth of the competing propositions. This approach may lead to an assessment of a 
likelihood ratio, as outlined in further detail in Section 4: Current and future issues. In this 
mode, the forensic scientist is still being ‘scientific’, in the broadest sense of being logical and 
coherent, but it is a different process from that which is conventionally known as the scientific 
method. 

Because investigative and evaluative opinions are formed in different ways, there are different 
challenges that lawyers can pursue to test those opinions. Guidance on these matters can be 
found in the RSS guide, Case assessment and interpretation of expert evidence (Jackson et al. 
2015). 

In R v Dallagher, the suspect’s conviction for murder was based almost entirely on evidence 
which compared an ear-print from the defendant with one found at the scene of the crime. 
The Law Commission noted: “at the time of D’s trial there was an insufficient body of research 
data to support the hypothesis (or assumption) that every human ear leaves a unique print 
and that the identity of an offender could confidently be determined solely on the basis of an 
ear-print comparison.” The prosecution also relied heavily on “subjective factors… rather than 
on objectively verifiable measuring techniques”. (Both quotes from paragraph 8.11 of its Report 
(below)). 

The Law Commission recommended how this kind of situation should be dealt with (paragraph 
8.12) in its 2011 advice in Expert Evidence in Criminal Proceedings in England and Wales: 

Under our proposed test, the prosecution would have had to prove that the 
witness claiming expertise was skilled in the comparison of ear-prints and 
therefore qualified to provide expert evidence in a criminal trial. If the defence had 
then made submissions on the poor data and doubtful hypothesis underpinning 
the expert’s proffered opinion evidence, or the judge had raised the matter 
independently, there would have been an enquiry into the reliability of the opinion. 
The judge may have been able to conclude without a hearing that the expert’s 
opinion (that D could be identified with absolute certainty from ear-prints alone) 
was insufficiently reliable to be admitted. Alternatively, there would have been a 
pre-trial hearing on the issue, which no doubt would have led to the same 
conclusion. The expert would not have been permitted to give an opinion that he 
was “absolutely convinced” that D had left the latent print at the scene of the 
murder. He might, however, have been able to give a weaker opinion on similarities 
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between the latent print and D’s print (assuming the jury had required the 
assistance of an expert in this respect). 

This approach is now found in the Part 19 of the Criminal Procedure Rules and Criminal 
Practice Direction 2015 V Evidence 19A, 19B and 19C. 

DNA 

DNA may be used as evidence to support or discredit the contention that someone was 
present at the scene of a crime. 

The RSS guide, Assessing the probative value of DNA evidence (Puch-Solis et al. 2012) includes 
a short guide to DNA and testing procedures. 

In order for this evidence to be admissible it needs to be shown that the methods used are 
scientifically credible and valid; that the quality control in the laboratory is rigorously 
maintained; that the sample itself is large enough and not contaminated or degraded; and that 
inappropriate inferences are not being drawn (for example, on the basis of calculations from 
unrepresentative databases). If a ‘match’ is found between DNA at a crime scene and DNA 
from an individual, how significant is this? There may be laboratory error or there may be other 
people who share that DNA. 

Random match probability 

The random match probability (RMP) is the probability of finding an evidence match within a 
particular population. This probability is often based on sampling, so you will also need to 
investigate its robustness (for example, sample size, relevant population, or 
representativeness). 

The RSS (Aitken et al., 2010) has pointed out that the RMP must not be: “confused with the 
probability of obtaining another match somewhere in the population. The random match 
probability is the probability of obtaining a match ‘in one go’, not the probability that at least 
one other member of the population of interest will produce a match. The probability a 
particular person identified in advance will win a lottery is different from the probability the 
lottery will be won (by someone).” 

We have already seen where this random match probability can be wrongly equated with the 
probability of guilt or innocence (see 1.7 Prosecutor’s fallacy and defence fallacy). 

In the trial of OJ Simpson, an expert witness gave a very small probability of 1 in 
57,000,000,000 in relation to a bloodstain found on a gate that matched Mr Simpson’s blood 
profile. This figure was used in commentary on the widely-reported case to presume guilt. 
However, as Jonathan Koehler (1997) pointed out in his paper on the use of such probabilities, 
even if the figure was reliable and valid, it provides only the random match probability. “These 
tiny frequencies do not themselves tell us (a) the probability that a matching suspect 
committed the crimes, (b) the probability that someone other than the matching suspect 
committed the crime, or even (c) the probability that the someone other than the matching 
suspect is the source of the observed characteristics.” 

Points (a.), (b.) and (c.) in the above example are not the same. Point (c) in the example is what 
is called the source probability error. This is similar to the prosecutor’s fallacy. Remember 
that the prosecutor’s fallacy transposes the probability of the evidence given the proposition 
of innocence, to probability of innocence, given the evidence. In the source probability error, 
the fallacy occurs if you equate the probability of finding a match between evidence and a 
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control sample where there is no common source, with the probability of two samples not 
having a common source, where a match has been found. 

In the example above, the only thing that can be said is that if the blood did not come from the 
accused, and the 1 in 57,000,000,000 figure has been calculated correctly, then there is a 1 in 
57,000,000,000 chance of the bloodstain sample matching the blood profile of Mr Simpson. It 
is only the random match probability. The error is confusing the probability of a match when 
the suspect is not the source, with the probability that the suspect is not the source given the 
match. This latter probability is the wrong conditional probability for an expert to consider. Any 
appraisal of the probability that the suspect is not the source given a match (the fact in issue) 
would require consideration of the probability of the suspect not being the source in the first 
place, i.e. before it is known there is a match. Statisticians may state this as the prior probability 
that the suspect is not the source. The probability once the evidence of a match is considered, 
a probability known by statisticians as the posterior probability, would require consideration of 
both the prior probability of the suspect not being the source and the match probability. 

Sampling 

Statements used by expert witnesses in relation to evidence are often based on reference 
datasets. In the RSS report Fundamentals of probability and statistical evidence in criminal 
proceedings (Aitken et al. 2010), the authors say that it is important to be able to identify and 
evaluate the assumptions underneath statements such as: 

“The glass submitted for analysis is seen in approximately 7% of reference glass 
exhibits examined in this laboratory over the last 5 years.” 

“Footwear with the pattern and size of the sole of the defendant’s shoe occurred 
in approximately 2% of burglaries.” 

The appropriateness of the dataset used for reference should be questioned. How were the 
footwear marks or glass exhibits chosen? Are they from a population that is relevant to the 
proposition in question? Is there any bias in the way items were selected and submitted from 
criminal investigations or did the items simply come from a survey of everyday objects in 
people’s homes? Datasets for the latter type of items are sometimes called convenience 
samples because they are quick, easy and relatively cheap to collect but they may not provide 
relevant, usable data. What population might provide a better reference dataset? 

A better reference dataset would be a random sample from what is known as the ‘relevant 
population’. Champod et al. (2004) showed that the definition of the ‘relevant population’ is 
determined by the specification of the proposition and its alternative. Consider a case of 
robbery in which a car is used to convey the offenders away from the scene of the crime in the 
north of England. The car crashes into bollards very close to the scene. An eye-witness sees 
the driver get out of the vehicle and run away. A footwear mark is found on the brake pedal of 
the car. Assume a suspect has been caught and a match found with his footwear. What 
population should be sampled to provide data that would be relevant to the consideration of 
whether the suspect’s shoe left the mark, given that we have a match? The scientist requires 
data that will inform him or her the probability of obtaining that match: 

 A. given the truth of the proposition that the shoe made the mark 

 B. given the truth of the alternative proposition that it was some other shoe 

This implies two sets of data are needed, as follows: 
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First, to help assign a probability of a match given the truth of the first proposition (i.e. the shoe 
made the mark), the scientist needs data on the reproducibility of marks made by the 
suspect’s shoe. An expert in footwear mark examination may have data on reproducibility in 
general but could also conduct experiments to collect data on the reproducibility of marks 
with this shoe. 

Secondly, to help assign probabilities of a match given the truth of the alternative proposition 
(i.e. it was some other shoe), it would seem that some form of data related to the frequency of 
occurrence of the matching footwear mark would be appropriate. Sales figures might be useful 
in this respect. For example, the examiner may obtain information such as “Between April 2015 
and March 2017, 100,000 pairs of shoes of the same sole pattern and size as the defendant’s 
shoes were sold in 100 outlets across the UK.” This statement could raise questions such as 
why take the UK as a whole, why those dates, how many outlets are there in the north of 
England? 

In addition, there is a problem with presenting bald, absolute sales figures. While such sales 
figures do offer some useful information, they are unlikely by themselves to provide estimates 
of relative frequencies in a relevant population. 

So, what would be an appropriate relevant population from which we could compile a relative 
frequency and, from that, a probability of a match? In our case example, we could use surveys 
of footwear that have been submitted in the course of casework within forensic science 
laboratories. This may be a relevant population, particularly if it is from people who had been 
suspected of committing a crime. But, we are dealing in our case with someone who is 
suspected of a specific crime that involved driving the getaway vehicle in the course of a 
robbery. People suspected, say, of a paedophile crime may not fall within the relevant 
population for this type of robbery and their footwear should not therefore be taken into 
account. 

There is a further twist - the eye witness describes the driver as “a young woman, short in 
height”. The relevant population from which to assess the relative frequency of occurrence of 
this particular type of footwear mark would then seem to comprise a population of short 
women who could be suspected of this type of crime. We are not considering a population of 
men; we are not considering people of any age; not considering formal, fashion shoes. Whether 
we actually have a dataset of footwear from a relevant population of short women who could 
be suspected of committing the crime is a moot point but, nevertheless, the principles of 
evidence interpretation (such as that recommended by the European Network of Forensic 
Science Institutes, ENFSI (2015)) have clearly defined the relevant populations. 
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Section 2: Key concepts in Statistics and 

Probability 

2.1 Basic probability 

What is probability? 

We might not know with certainty what is going to happen next, but we can talk about the 
probability8 of something happening. 

A simple example is that of throwing a standard die with 6 possible outcomes – 1, 2, 3, 4, 5, or 6. 
The probability, for example, of throwing a six can be thought of as the number of ways that 
that outcome might happen, divided by the total number of different outcomes (i.e. 6). 

Probability (event happening: throwing a 6)   =  Number of ways it could happen = 1 
    Total number of outcomes = 6 

The probability of any outcome can therefore be expressed as a fraction (1/6), or as a decimal 
between 0 and 1 (in this case, 0.17). A probability of zero ‘0’ means that an event will not 
happen at all, and ‘1’ means there is absolute certainty the event will happen. If the probability 
of something happening is 0.5 (or ½), and there are two possible outcomes, it means it is 
equally likely that one of two events might happen. We can also express probabilities as 
percentages, for example, 50%. 

Of course, even if the probability of throwing a 6 is 1/6, this doesn’t mean that, every sixth throw 
of a die will be a 6. It just means that if you threw a die say 1000 times (providing the die is not 
biased in any way), you would expect to get a ‘6’ 1/6 x 1000, in other words, around 167 times. 

If you did get a total number of sixes that was widely different, say 250, you might suspect that 
there was something wrong with the die. On the other hand, it could just be a coincidence. 

Section 1.2 covers coincidences in more detail and gives an example of a well-known case 
which illustrates the psychological tendency for people to look for causal explanations and 
patterns. 

If you toss a coin and it comes up heads three times in a row, what would you expect to be the 
result the next time you throw it? Heads or tails? The probability is unaffected. It is still 50/50. 

What’s the probability of one thing happening OR another? 

In a group of 20 people, 6 people have red hair. So the probability of a person drawn at random 
of having red hair is 6/20 or 30%. There is also a 50% probability of a random person wearing 
black shoes. What’s the probability of someone having red hair OR wearing black shoes? 

 
8  Though words such as probability, likelihood, and chance may be used interchangeably in everyday speech, to statisticians and 

probability theorists they have specific technical meanings. See Section 4: Current and future issues for a discussion of 
likelihood. 
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If some people can have red hair AND wear black shoes (say 4/20, 20%) then these people 
would be counted twice if you just added the probabilities. The event of having red hair and the 
event of having black shoes are therefore NOT mutually exclusive. 

Count the figures in Diagram 2. The probability that a person chosen at random has red hair OR 
black shoes is: 6/20 (Probability red hair) + 10/20 (Probability black shoes) – 4/20 (those with 
red hair and black shoes) = 12/20 or 60%. Note that you need to know the size of the overlap to 
calculate this correctly. 

Diagrammatic representations of individuals’ hair colour (circles) and shoe colour (triangles). 

What’s the probability of two things happening at the same time? 

What if we toss a coin and throw a die at the same time? We want to know the probability of 
getting a head AND a six. There are 12 different outcomes (see table below). Tossing a coin and 
throwing a die are called independent events. In other words, if you toss a coin, it does not 
affect the outcome from throwing the die. (Note that these two events are therefore not 
mutually exclusive – both can occur simultaneously.) 

Because tossing a coin and throwing a die are independent, we can multiply the probabilities 
together. So the probability of getting a head and a 6 is 1/2 multiplied by 1/6 = 1/12 

We can show this visually in a table of the different outcomes. There is only one possibility 
(shaded) where both outcomes can happen together out of 12 possibilities. 

Result of 
a coin flip 

Result of the throw of a die 
1 2 3 4 5 6 

Heads (head/1) (head/2) (head/3) (head/4) (head/5) (head/6) 
Tails (tail/1) (tail/2) (tail/3) (tail/4) (tail/5) (tail/6) 

Table showing combinations of a flip of a coin and a throw of a die.  
The one outcome of rolling a 6 and getting a head is shaded. 

Events might not, however, be independent. They might be related or ‘dependent’ in some 
way. In this case, you can’t multiply their probabilities together. For example, two cot deaths 
may not be independent events but connected by, for example, genetics or some aspects of a 
similar environment (see 1.3 Independence for further details of independence in a legal 
context). 
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2.2 Inferential statistics and probability 

Inferences about the relative impact or potential causality of different pieces of evidence are a 
key part of legal reasoning. 

Descriptive statistics provides information (a description) of the data that you have available, 
such as a sample (see Refresher: The statistician’s toolbox). Inferential statistics provide 
information on the population from which the sample was drawn. 

A simple example of this is an estimate of a characteristic for a population, based on a sample. 
In a manufacturing plant, a quality control manager may weigh a sample of ten cakes from a 
production run, and take the mean of those ten measurements as an inference of the average 
weight of the whole production run. The figure arrived at may be correct or may be wrong by 
some degree (for example, if the ten picked all happened to be underweight against the 
specification). How confident can the quality control manager be about the figure? Inferential 
statistics assists with this by quantifying this uncertainty. 

These inferences are always subject to uncertainty, as the wider population is uncertain. But 
the inferential statistics can provide useful information. The usefulness of the information 
depends on the quality of the information about the sample, and the model used by the 
statistician. The model is the representation of the problem at hand, and includes 
assumptions, the relationship between the model and reality, and the mathematical processes 
used to derive the inferential statistics. 

Inferential statistics in legal cases 

Inferential statistics are widely used in legal cases across many areas of law. For example: 

 Ø If a cancer diagnosis has been missed, or if a person has suffered serious head  
  injury in an accident, the settlement will usually take account of an estimate of  
  the person's life expectancy, derived from sources such as the Ogden tables  
  (which incorporate mortality tables kept by the Office for National Statistics) or 
  studies of groups of similar patients. (See discussion in Section 4: Current  
  and future issues.) 

 Ø Samples of potential customers are also used in trademark infringement or  
  deceptive advertising cases to determine the fraction of potential consumers  
  who are confused as to the identity of the manufacturer. This typically occurs  
  as a result of the design or packaging of a product, or a misleading   
  advertisement suggesting that a scientific study has shown that the advertised  
  product is superior to a competitor’s. 

The following sections explain how statistics and probability are used to support some simple 
inferences. 

What’s happening in the real world? 

Statistics obtained from samples from a population can be used to make inferences about 
characteristics of the population. For example, a sample mean is an estimate of a population 
mean. An interval estimate for a population characteristic can also be derived which takes 
account of the random variability in the measurements. For a given level of confidence, the 
less variable the measurements, the narrower the interval. 
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Consider an attempt to estimate the mean height of a population of males. The mean height of 
the sample provides an estimate of the mean height of the population. Each time a sample is 
drawn from the population, a different group of people will be selected. This will change the 
sample mean. Statistical techniques can use the variation in heights amongst members of the 
sample to determine an interval estimate of the mean height of the population. This is an 
interval (a range of values) which has a stated probability of including the value of the 
parameter of the population. 

One way to reflect how certain we are that that a sample estimate reflects the value we want to 
know is by using a confidence interval, for a specified confidence level. If repeated samples 
are drawn from a population, then the confidence level is the percentage of confidence 
intervals that will contain the population mean. We can choose a confidence level and, from 
that, calculate a confidence interval of a range of values that is likely to contain the value we 
want to know (e.g. a range of values around the mean height of our sample, which is likely to 
contain the mean height of the population). It is expressed as the estimated value (for example 
mean height), +/- (plus or minus) a margin of error. The confidence level chosen and the 
standard deviation of the sample estimate determine the calculation of the margin of error. 
Typically, the wider the confidence level chosen, the larger the margin of error. Confidence 
intervals are usually referred to by their chosen value of confidence level, e.g. a 95% 
confidence interval is one with a confidence level of 95%. The choice of confidence level in a 
particular application may be specified by regulation, influenced by convention, or made by 
expert judgement. 

An example of a confidence interval could be a survey that had a 4% margin of error calculated 
for a chosen 95% confidence level. The survey found that 28% of respondents said they would 
be likely to vote for a particular party. That means that the 95% confidence interval for the true 
value of what is being measured (in other words, the population percentage who voted for that 
party) – runs from 24% to 32% (in other words, 28% +/- 4%). Why 95%? If 95% confidence 
intervals are calculated every time this survey is performed, then 95% of those intervals will 
contain the true value. For this one specific survey, we can’t know whether this is one of the 
95% of intervals that contain the true value, or the 5% that don’t, but the confidence interval 
does give a range of plausible values that the true value might take. In opinion polls, a 95% 
confidence interval is conventional. A 99% confidence interval could be ‘better’ in terms of 
being certain that this is one of the intervals that contains the true value, but the trade-off is 
that the margin of error will be larger, so the results will be less precise. 

Sample size matters. For example, suppose that with a sample size of 100 with a random 
sample you get a margin of error of about +/- 10% then with a random sample of 1000 people 
that margin of error falls to about +/- 3%. 

 

An opinion poll leading up to the Scottish Referendum in 2014 was carried out in August 2013 
and then August 2014. In 2013 the result of a question asking if Scotland should be 
independent was that 51% said yes with a margin of error of +/- 3%. The 2014 opinion poll result 
was 47% +/- 3%. So you might think that over that year there had definitely been a fall in the 
potential yes vote. However, look at the ranges. The actual result for 2013, with a 95% 
confidence interval, could plausibly be anywhere between 48% and 54%, and for 2014 between 
44% and 50%. The two ranges overlap. That gives a hint that the potential yes vote might not 
have fallen after all. Could it even have increased slightly? One can’t tell how plausible that is 
without doing some further calculations, but the uncertainty in the two original figures provides 
a warning about reading too much into small changes in survey results. 
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Confidence intervals are one measure of sampling error. Non-sampling error refers to other 
errors, including biases of data collection, such as leading questions in surveys, or fingerprint 
databases that contain only previous criminals. 

Inferential statistics can also be used to assess the statistical significance of an association 
between two characteristics, e.g. smoking and lung cancer.  

 

For example, it can be used to assess whether or not a medical intervention has an effect, or if 
there are linkages or associations between data. We have explored correlations in 1.5 
Correlation and causation. 

What’s the probability of something happening once something else has 

happened? 

The situation of determining the probability of an event after something else has happened is 
called conditional probability. The probability of the second event happening is ‘conditional’ 
on what happens first. 

If, for example, you have a bag of 100 marbles ‒ a mix of red, green and blue ‒ the probability of 
drawing a red marble is 5/100 if there are only five red marbles in the bag and all marbles are 
the same shape. If you draw a marble out of the bag, and do not put it back, the probability of 
drawing a red one the second time is changed to either 5/99 if you did not draw a red one out 
the first time, but 4/99 if you did. 

In other words, the two events are not independent. They are dependent. As we saw in 
sections 1.3 Independence and 2.1 Basic probability, you can’t multiply probabilities 
together if the two events are dependent. 

The misunderstanding of conditional probability is behind some well-known miscarriages of 
justice which we have explored in 1.7 Prosecutor’s fallacy and defence fallacy, and 1.8 
Expert opinion evidence. We also considered dependent and independent variables further 
in 1.3 Independence. We will consider them further in 2.3 The scientific method. 
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Your expert witness may write these probability relationships using specific notation. 

For example, when two events A and B are mutually exclusive, then the probability of either A 
or B occurring is written as: 

 P(A U B) = P(A) + P(B) (A U B is said as A ‘union’ B ‒ 
  a mathematical term to combine 
  separate groups) 

When two events are not mutually exclusive, then the probability of either A or B occurring is 
written as: 

 P(A U B) = P(A) + P(B) – P(A ∩ B) (where ‘∩’ means ‘intersection’) 

The ‘intersection’ means the overlap between the group of all ‘As’ and the group of all ‘Bs’. You 
must take this number away from the total, otherwise you would be double-counting. 

The probability of a barrister being female and the probability of a barrister being left-handed 
are not mutually exclusive. Say 4 in 10 barristers are female, then the probability of picking a 
barrister at random and them being female is 0.4. P(female) = 0.4 

Say 1 in 10 barristers are left-handed – that’s a probability of 0.1. P(left-handed) = 0.1 

To find the total probability of a barrister being either left-handed or female, add the 
probability of a barrister being female to the probability of a barrister being left-handed (0.4 + 
0.1), and deduct from that the overlap of the two – the probability of a barrister being both 
female and left-handed (say it is 2 in 100, which is 0.02). Thus the probability of a barrister 
being either female or left-handed is P(female U left-handed) = 0.4 + 0.1 – 0.02 = 0.48 or 48 out 
of 100. 

Does that mean the probability of a barrister being either male or right-handed is 0.52? No. 
Assuming only male and female, and left- and right-handedness, P(male) = 0.6, P (right-
handed) = 0.9, P(male ∩ right-handedness) = 0.52 P(male U right-handed) = 0.6 + 0.9 – 0.52 = 
0.98. 

Conditional probability is written as P (B│A) which means the probability of B given that A has 
already happened (or is hypothesised to be the case). (It is important to know that P (A│B) is 
not the same as P(B│A). In other words, the probability that A has happened given that B has 
already happened, is (apart from very rarely) not the same as the probability that B has 
happened given that A has already happened.) 

For example, if you look at the example in The defence fallacy in 1.7 Prosecutor’s fallacy and 
defence fallacy, the probability that a person matches the evidence given that they were 
innocent P(match │ innocent) is 0.0009 while the probability of being innocent given a person 
matched the evidence P(innocent │ match) is 0.9. 

Reference and further reading 
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2.3 The scientific method 

The scientific method is a formalisation of a way of thinking and acting in a logical, effective and 
efficient way. It forms the basis of a research methodology that guides the scientist in forming 
hypotheses, in designing experiments to collect data to test the hypotheses and in evaluating 
those data. Different hypotheses about, for example, causality can be explored in this way. 

A simple way to consider the scientific method is as a simplified series of six steps that 
operates in a cycle (Ham and MaHam 2016): 

 

One common approach used in medical research, for example, is a randomised controlled 
trial. Here, people are randomly assigned to two groups, one of which is treated in a certain 
way, and the other either given a different treatment or a placebo. ‘Double blind’ approaches, 
while not always feasible, are the most rigorous since the treated and untreated group do not 
know which they are, and neither do the researchers. 

There is also a range of non-experimental methods of conducting science such as in medical 
research when using correlations between data (see 1.5 Correlation and causation). 

Significance testing 

When considering the results of a scientific investigation, the role of random chance and 
variability must be considered. Just as for estimates of population characteristics (see 2.2 
Inferential statistics and probability) there is likely to be a lot of random variation in scientific 
results. Is there a link between your experiment’s results and the actions you took over the 
course of your experiment? Did your experiment ‘work’, or did you just have a lucky day? You 
can use tests of statistical inference, such as significance testing, to help address that. As we 
explain in the box below, statistical inference can only calculate a probability for obtaining the 
experimental values you obtained (or anything more extreme), if your experimental actions 
had no influence over the results. A small value for this probability does not imply a large 
probability for the hypothesis that there is an effect. A small value is a measure of support for 
your results, not a definitive statement about the probability of the truth of your experimental 
hypothesis. 

In statistical tests we usually work with two hypotheses, the null and the alternative. The null 
hypothesis is something like the status quo; it is the assumption we would make unless there 
was sufficient evidence to suggest otherwise. The alternative hypothesis represents a new 
state of affairs that we suspect (or perhaps hope) might be true. 

For example, suppose we are testing a new medical treatment to see if it performs better than 
the existing standard treatment. The null hypothesis would be that the new treatment is no 
better (or worse) than the old; the alternative would be that it performs better. 
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A significance test assesses the evidence in relation to the two competing hypotheses. A 
significant result is one which favours the alternative rather than the null hypothesis. A highly 
significant result strongly favours the alternative. 

The strength of the evidence for the alternative hypothesis is often summed up in a ‘P value’ 
(also called the significance level) – and this is the point where the explanation has to become 
technical. If an outcome O is said to have a P value of 0.05, for example, this means that O falls 
within the 5% of possible outcomes that represent the strongest evidence in favour of the 
alternative hypothesis rather than the null. If O has a P value of 0.01 then it falls within the 1% of 
possible cases giving the strongest evidence for the alternative. So the smaller the P value the 
stronger the evidence. 

Of course, an outcome may not have a small significance level (or P value) at all. Suppose the 
outcome is not significant at the 5% level. This is sometimes – and quite wrongly – interpreted 
to mean that there is strong evidence in favour of the null hypothesis. The proper 
interpretation is much more cautious: we simply don’t have strong enough evidence against 
the null. The alternative may still be correct, but we don’t have the data to justify that 
conclusion. 

A measure of the strength of evidence is power. When we interpret the P value to say that we 
cannot reject the null hypothesis, this does not automatically mean that we should accept the 
null hypothesis. The proper response should take into account the power of the test. Power is a 
measure of the probability of correctly rejecting a false null hypothesis, that is, the probability 
of correctly detecting an effect when there is an effect there to be detected. 

The power of a statistical test depends strongly on the amount of data available. It is easier to 
identify false null hypotheses with large samples than it is with small samples – more evidence 
makes better decisions possible. However, there is a danger lurking here: very large samples 
can result in small P values even though the effect being detected is tiny and of little or no 
practical importance. 

The interpretation of P values is one of judgement. In many areas of research, a P value of 0.05 
or below is conventionally taken to be sufficient to reject the null hypothesis. In other areas, a 
much more stringent figure is required. An extreme example is the work at CERN to discover 
the existence or not of the Higgs Boson, where they set themselves a threshold equivalent to a 
P value of 0.0000003. The interpretation of P values is an area of vigorous debate within the 
scientific and statistical communities. 

There are interesting parallels here with criminal cases in a court of law. The null hypothesis in 
court is that I am not guilty. This is the assumption we start with; the assumption we hold to 
unless there is sufficient evidence otherwise. The alternative is that I am guilty, and the court 
accepts that conclusion only if my guilt is shown ‘beyond reasonable doubt’. But if the 
prosecution fails to obtain a guilty verdict this does not show that I am innocent. Perhaps I am 
innocent; or perhaps I am guilty but the evidence is not strong enough to show guilt beyond 
reasonable doubt. In the latter case, additional evidence may emerge later and I may face a re-
trial.9 

Likewise, if the evidence in favour of the new medical treatment is strong enough, we will want 
to adopt it. But if the evidence is weak we will stick with the standard treatment, at least until 
additional experimental evidence emerges to suggest that the new treatment may be better. 

 
9  In England, only in exceptional circumstances for certain offences through an application to the Court of Appeal to quash the 

acquittal under part 10 of the CJA 2003. 



© 2019 The Council of the Inns of Court and The Royal Statistical Society – page 39 

Reference 

Bryan M Ham and Aihui MaHam, Analytical Chemistry: A Chemist and Laboratory Technician's Toolkit (John Wiley 
and Sons 2016) 

  



© 2019 The Council of the Inns of Court and The Royal Statistical Society – page 40 

Section 3: Into practice 

In this section, we look at how these statistical issues may arise in practice, and how to manage 
them. 

We start with a discussion on communicating with experts about statistical issues. 

We then introduce a set of guidelines for experts, which have recently been developed by the 
ICCA. 

We conclude by presenting four (fictional) case studies, drawn from different areas of legal 
practice, which throw up many of the evidential problems discussed in Sections 1 and 2 of this 
booklet. They are offered as suitable cases for discussion and analysis in advocacy training 
sessions. There is no common thread connecting them. Each poses its own set of challenges 
for the advocate. Can they be identified in advance, and how are these different challenges 
answered? 

 Ø Case study one: criminal. An example of a robbery involving a murder, where  
  DNA evidence is available from the suspected murder weapon and from the  
  crime scene. How should you scrutinise the evidence to assist with the case for 
  the defence? 

 Ø Case study two: civil (medical negligence). A case where the claimant was  
  not referred to hospital when they saw their GP. The court is to consider  
  evidence as to whether the GP’s inaction would have made any difference to  
  the claimant’s current condition. What questions should be asked of the expert 
  witnesses in the case? 

 Ø Case study three: family. A case of a care order being made with respect to a  
  child. The court will consider the current and future capability of the mother.  
  Evidence about the mother’s alcohol intake will form part of the court’s  
  decision. Is it reliable? 

 Ø Case study four: planning. Involves a developer wanting to build a new  
  supermarket, against some residents’ wishes. A professor of mathematics has  
  provided evidence relating to traffic flow, and local volunteers have conducted  
  a survey. Will they help or hinder your case? 

3.1 Communicating with experts about statistical evidence 

Are you speaking the same language? 

Statistical language is not necessarily the same as legal language, and neither are necessarily 
the same as everyday language. Words that you use may have different meanings for jurors, 
experts and lawyers. Statisticians can use what might appear to be an everyday word as a 
specific technical term. Take significance, for example. In everyday language, significance 
carries associations of importance, something with considerable meaning. In statistics, 
significance is a measure of whether a result is due simply to chance or random variability or 
not (see 2.3 The scientific method) and specifically does not indicate whether the result is of 
importance or benefit. 
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In addition, the same word may be used in statistics as in another professional discipline, but 
with a different intended meaning. Take significance again. A clinician may use significance as 
shorthand for clinical significance, a measure of whether something is of practical value to a 
patient. 

We highlight several terms with specific statistical meaning in this guide, many of which also 
have everyday meaning. Further examples are provided in McConway (2016) and Aitken & 
Taroni (2008). 

How expert is your expert? 

The Sally Clark case (see 1.3 Independence for an outline) is a famous example of where an 
expert witness (in medicine) incorrectly handled statistics in court. Guidelines for expert 
witnesses (see below) require experts to comment only within the boundaries of their 
expertise. This assumes, of course, that they are aware of the boundaries of their expertise, 
even under cross-examination. The Royal Statistical Society offers Chartered Statistician 
(CStat) as a professional award, which may be expected for statistical expert witnesses. 

Statisticians are not always certain 

Statistics and probability apply scientific techniques to uncertainty. They draw inferences to 
describe uncertain situations, and make decisions in circumstances of uncertainty. 

Statisticians use judgement and skill, as well as calculation and models. A statistical problem 
requires the statistician to look at what questions can be asked, what data are available or 
collected, what assumptions or existing conventions or prior work to consider, how to analyse 
the data appropriately, and how these results can be applied to the questions and the original 
problem. These choices should be based on current conventions and good practice, and be 
justifiable. The resulting calculations will only be as reliable as the model they are derived from. 

As David Spiegelhalter comments, “In general, I don't feel statistical evidence is handled well 
by courts. They like either incontrovertible numerical “facts”, or overall expert opinions. But 
statisticians deal with a delicate combination of data and judgement that often gives rise to 
“rough” numbers, and these don't seem to fit well with the legal process.”10 Statisticians are not 
merely number-crunchers; they use interpretation and judgement to discharge their 
professional duties. 

The questions the statisticians can answer may not be the questions you ask 

Statisticians can only work with what’s available, and may want to address simpler questions 
than those originally posed, as that is what the available evidence allows (see Bird and Hutton 
(2012) for an example of this). 

In order to discharge their duties to the court properly as expert witnesses, experts need to be 
clear about the questions or propositions that they are being asked to address and about 
which of those are within their remit and competence to answer. There will be questions for 
which the court needs answers but for which it would not be safe or logical for the expert to 
provide those answers. A case involving an assault by kicking provides an example. The 
prosecution allege the defendant kicked the victim repeatedly while the victim was lying on the 

 
10 Oz Flanagan, ‘Statistics and the law: a recent history of an uneasy relationship’ (StatsLife, 13 February 2015) 

<www.statslife.org.uk/features/2819-statistics-and-the-law-a-recent-history-of-an-uneasy-relationship> accessed 6 October 
2017 
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floor of an alleyway in a busy city centre. The defendant says he had been drinking heavily on 
the night in questions and he remembers walking down the alleyway and stumbling over a body 
lying on the floor. The expert gave evidence to the effect that the pattern of blood-staining 
observed on the defendant’s shoes and trousers was far more likely to be seen if the kicking 
allegation were true rather than if the stumbling alternative were correct. The expert bases that 
opinion on answers to questions of the type – how often would you expect to see blood-
staining of this type on people who have kicked bodies compared to people who have 
stumbled over bodies? She can rightfully provide expert answers to these questions. She 
cannot answer the question – given your observations of the blood-staining, how likely is it that 
the defendant kicked the victim? The answer to that question requires knowledge of, and an 
opinion about, the other evidence in the case. The expert may have very little or no knowledge 
of the other evidence or, if she does have some knowledge, she may have formed a biased view 
of the probability that the defendant kicked the victim. 

Differences of approach 

As a starting point to understanding basic statistics and how to use them in legal contexts, 
advocates need to be able to appreciate the similarities and differences between how lawyers 
and statisticians think about risk, probability and causality. Correspondingly, scientists who 
understand the implications of the questions being asked of them will make better expert 
witnesses. 

Both lawyers and statisticians deal with the inferences and consequential decisions which can 
safely be reached in situations of uncertainty. 

Statisticians, and experts who use statistics, whether they are examining the probable cause of 
some past event, or making a prediction as to what is likely to occur in the future, will refer to 
general data and other similar information, and consider the inferences which can properly be 
drawn from that material. For example, they might look at the frequency of a genetic marker in 
the general population or the frequency of the occurrence of an event such as a cot death or 
an engine failure. This will create a context in which a set of similar facts – past or future – can 
be evaluated. Often this will involve the expert drawing on statistical evidence, combined with 
their own judgement. An expert on fire, for example, may use evidence from previous fires to 
draw up a list of potential causes of fire in the current case, and then use observations of the 
current case to assess the probable cause(s). 

The decisions of the courts, by contrast, are determined by applying a burden and standard of 
proof. The standard of proof is described as ‘beyond reasonable doubt’ in criminal cases and 
the lesser ‘on the balance of probabilities’ standard in all civil litigation. Neither term has a 
technical scientific meaning but both are routinely applied by judges and juries in all cases 
involving factual disputes. 

Lord Mackay in Hotson v East Berkshire Area Health Authority [1987] A.C. 750, discussing the 
use of statistics as an aid to proof of causation, referred to the Californian case of Herskovits v 
Group Health Cooperative of Puget Sound and the dissenting judgment of Justice 
Brachtenbach who considered the following. If you were knocked down by an unknown taxi cab 
in a town with two cab companies, it would (other things being equal) be more probable that 
you would have been knocked down by the one with the larger fleet. Mackay concurred with 
Brachtenbach’s assessment that that is not enough evidence for any court to find that 
company liable. 
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Lord Phillips in Sienkiewicz v Greif (UK) Ltd described this as “an extreme example of the fact 
that statistical evidence may be an inadequate basis upon which to found a finding of 
causation.”11 

The economist John Kay summed this up pithily as: 

A court is concerned to establish the degree of confidence in a narrative, not to 
measure a probability in a model. (Kay 2013) 

While the standard of proof required to discharge that burden is never less than the balance of 
probabilities (the civil burden of proof: “more likely than not”), statistics which do not 
themselves disclose a greater than evens chance of something happening may still assist a 
party on whom a burden of proof lies: thus in cases where the law recognises that a claimant is 
entitled to damages for the “loss of a chance”12 , a statistically evidenced chance of less than 
51% may still have probative value. For example, an injured claimant whose injury has 
prevented him continuing his career may seek to rely on data showing that 20% of those at his 
level in the organisation go on to achieve promotion to a higher grade in order to enhance his 
claim for loss of earnings by a similar percentage. (However, if it is not admitted, the existence 
of the lost 20% chance must itself be proved by the claimant to the balance of probabilities 
standard.) 

We can see that the approaches of the expert and the advocate differ. This is not to say that 
either is “wrong”; the legal approach to evidence and causality has a long history and is 
generally effective. As regards statistical information, the lawyer’s line of enquiry is much 
narrower than that of the statistician. Defensible legal interpretation of expert statistical 
opinion is possible. The conceptual issues of legal standards of proof should be 
understandable to statistical experts, and conceptual clarity will enable lawyers to properly 
apply the standards of proof. 

Further developments 

People understand and interpret statistical and probabilistic evidence in different ways. It is 
important that expert witnesses are credible in their use of statistics and able to present their 
knowledge and opinions clearly and appropriately and that advocates have a clear 
understanding of the way they work. 

Particularly where DNA and other forensic evidence is used, there is ongoing development of 
how to handle and present evidence using statistical techniques (See particularly 1.8 Expert 
opinion evidence and Section 4: Current and future issues). 

References and further reading 

Sheila M Bird and Jane L Hutton, ‘Statistician expert witnesses in agreement on relative hazards’. (2012) 18(2) 
Clinical Risk 58 

Philip Dawid, ‘Statistics on Trial’ (2005) 2(1) Significance 6 

A Philip Dawid, ‘The role of scientific and statistical evidence in assessing causality’ in Richard Goldberg(ed) 
Perspectives on Causation (Hart Publishing 2011) and A. Philip Dawid, David L. Faigman and Stephen E. Fienberg, 
‘Fitting Science Into Legal Contexts: Assessing Effects of Causes or Causes of Effects?’ [2014] Sociological Methods 
& Research 359 both discuss differences between science and law in terms of the questions asked about causes on 
populations and individuals. 

 
11  [2011] UKSC 10; [2011] 2 AC 229 [96] 
12 Such as in Allied Maples Group Ltd v Simmons and Simmons [1995] 1WLR 1602 CA. 
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Herskovits v. Group Health Cooperative of Puget Sound, 99 Wn.2d 609, 664 P.2d 474, 1983 Wash. 
https://h2o.law.harvard.edu/cases/5439 

ICCA Guidance on the preparation, admission and examination of expert evidence (ICCA 2017) Available from 
www.icca.ac.uk 

John Kay, ‘A story can be more useful than maths’, (Financial Times, London, 11 February 2016) 

Kevin McConway, ‘More confusing terms in statistics’, (Open University OpenLearn, 11 February 2016) 
<www.open.edu/openlearn/science-maths-technology/mathematics-and-statistics/statistics/more-confusing-
terms-statistics> accessed 6 October 2017 

3.2 Guidelines for experts 

In the discussion of these case studies, the following Guidelines (GLs) are likely to be relevant. 
They summarise principles which are now well-established across all areas of advocacy. Many 
of these guidelines originate in the judgment of Cresswell J in the Commercial Court in The 
Ikarian Reefer [1993] 2 Lloyds Rep 68 at 81-82. Later rules of court and good practice have 
expanded and enlarged upon the principles stated in that case. They are reflected in the Civil 
Procedure Rules, Part 35 and Practice Direction 35, and the recommendations of the Law 
Commission (2011) in Expert Evidence in Criminal Proceedings in England and Wales (Law 
Commission No. 325), now incorporated in the Criminal Procedure Rules and Practice 
Directions, Part 19. 

GL1 - An expert witness owes a duty to the court to give independent, objective and unbiased 
evidence within his or her area of expertise. 

GL 2 - The expert’s duty to assist the court overrides any duty owed to the party by whom the 
expert is instructed or paid. 

GL 3 - An expert owes a duty to the court to define his or her area of expertise and inform the 
court of any question to which the answer would fall outside his or her area of expertise. 

GL 4 - An expert must make clear which facts relied upon are within his or her own knowledge 
and which facts are derived from other sources. 

GL 5 - Where any facts, including examinations, measurements, tests or experiments, have 
been provided or carried out by others, the expert must say from whom the relevant 
information has been obtained and the extent to which (if at all) the expert participated in the 
obtaining of the facts or material in question. 

GL 6 - Experts should always resist any attempt by advocates to present their opinions in 
numerical form, and certainly not by reference to the relevant standard of proof. 

GL 7 - Where there is a range of opinion on any matter the expert must summarise it and 
explain why he or she has reached his or her own conclusion. 

GL 8 - Where there are material facts in dispute, the expert should give his or her opinion on 
each hypothesis and should not express a view in favour of one version or another unless, by 
virtue of expertise and/or experience, he or she can express and justify a view on the 
probabilities. 

GL 9 - If at any stage in legal proceedings an expert believes that there is a reason for changing 
or qualifying his or her opinion, the court and the parties must be informed immediately. 

GL 10 - Any of the following could provide a reason for determining that expert opinion 
evidence is not sufficiently reliable: 
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 a.  the opinion is based on a hypothesis which has not been subjected to sufficient 
  scrutiny (including, where appropriate, experimental or other testing), or which 
  has failed to stand up to scrutiny; 

 b.  the opinion is based on an unjustifiable assumption; 

 c.  the opinion is based on flawed data; 

 d.  the opinion relies on an examination, technique, method or process which was  
  not properly carried out or applied, or was not appropriate for use in the  
  particular case; 

e. the opinion relies on an inference or conclusion which has not been properly reached. 

GL 11 - In assessing the reliability of expert opinion evidence, the court will have regard to: 

a. the extent and quality of the data on which the opinion is based, and the validity of the 
methods by which they were obtained; 

b. if the opinion relies on an inference from any findings, whether the opinion properly explains 
how safe or unsafe the inference is (whether by reference to statistical significance or in other 
appropriate terms); 

c. if the opinion relies on the results of the use of any method (for instance, a test, 
measurement or survey), whether the opinion takes proper account of matters, such as the 
degree of precision or margin of uncertainty, affecting the accuracy or reliability of those 
results. 

Read through each case study carefully and firstly work out what these statistics and 
probability issues are, and what may be problematic about each. Then work out an appropriate 
line of questioning to use in each case. 

Further reading 

ICCA Guidance on the preparation, admission and examination of expert evidence (ICCA 2017) Available from 
www.icca.ac.uk 

3.3 Case study one – Criminal 

Read the following scenario. You are acting for D in this case. 

D is accused of murder. Three men entered the deceased’s premises, which was a first floor 
flat, accessed from a front door giving out onto the street. He was fatally stabbed. The motive 
was believed to be robbery. An eye witness saw three men ring the bell on the street and being 
let in by the deceased. The same witness saw three men run from the premises a few minutes 
later. No useful descriptions were noted. 

A knife, believed to be the murder weapon, was found discarded in a nearby dustbin a few 
hours later. The knife had been brought to the scene, i.e. it was not from the flat of the 
deceased. It was sent for forensic analysis to a private provider of forensic services. 

The doorbell was also swabbed for DNA, and the swabs were sent for analysis. 

There is a prosecution report as to DNA findings on the knife and doorbell. 

These state that there is blood on the blade of the knife, which yielded a full single DNA profile. 
That profile matched the profile of the deceased. The probability of the match being obtained 
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if the blood originated from someone else unrelated to the victim was said to be in the order of 
1 in 1 billion. 

There was a complex mixed DNA profile on the handle of the knife. The report states that there 
were at least 3 contributors to the mixture. It further states that the profile was run through a 
computer programme used by the forensic provider. It sets out two competing propositions. 
H1 is that the mixture is from D plus two unknown contributors (the prosecution hypothesis). 
H2 is that the mixture comes from 3 unknown contributors, not including D (the defence 
hypothesis). The report states that the DNA profiling results are 1,000,000 times more likely 
under H1, than under H2. This is said to provide “very strong support” for the presence of DNA 
from D in that mixture. 

As to the doorbell, the prosecution report states that there is again a complex mixed DNA 
profile from at least three contributors, but that the mixture is not amenable to a statistical 
evaluation because of the poor quality of the mixed profile. It, however, states that the majority 
of the components of D’s profile are found within the mixture, and that the results are such as 
the expert might expect to find had D contributed to that mixture. It goes on to state that the 
findings relating to the doorbell provide strong support to the proposition that D contributed 
DNA to the doorbell mixture rather than the proposition that he did not. 

D is arrested two months later. There is some other circumstantial evidence of involvement, 
but none that would found a case to answer, absent the DNA. D denies any involvement, and 
says that any match must be purely coincidental. 

Points for discussion 

 Ø What further disclosure should you ask for in relation to any of the findings? 

 Ø Would you want to instruct your own expert and, if so, what specific questions  
  might you ask him/her? 

 Ø Are there any admissibility issues? If so, what are they? 

 Ø What challenge can you make to any of these conclusions in cross-  
  examination? 

 Ø Has the opinion in relation to the doorbell findings conformed to the relevant  
  Guidelines (14-16) in the Forensic Science Regulator’s guidance on reporting  
  DNA mixtures? In particular, has the prosecution established that the expert  
  has sufficient relevant/audited experience to give a reliable, qualitative opinion 
  on the strength of the evidence? Should this opinion be excluded? 

 Ø Use of pt 19 CrimPR and CPD – have these been complied with? 

Further reading 

Forensic Science Regulator, Legal obligations: issue 5. FSR-I-400 (Forensic Science Regulator 2017) 
https://www.gov.uk/government/publications/legal-obligations-issue-5 

Forensic Science Regulator, ‘DNA mixture interpretation: draft guidance’ (Forensic Science Regulator 2017). 
Consultation on draft guidelines underway at time of going to press: www.gov.uk/government/consultations/dna-
mixture-interpretation-draft-guidance, accessed 6 October 2017 
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3.4 Case study two – Civil (medical negligence) 

Read the following scenario. You are acting for a claimant (C). You are preparing to see your 
side’s expert witness Dr X in conference. Consider the points you need to discuss with him 
(including any weaknesses in his evidence). Consider also what points you would want to put to 
the other side’s expert witness (Professor Y) in cross examination. 

The undisputed evidence is that, from 7am, C then aged 45, in previous good health though 
with a family history of hypertension, started to experience mild symptoms which it is later 
established were the precursors of a stroke. He saw his GP at 9am but the GP (D) gave 
reassuring advice and prescribed no treatment. Six hours later, at 3pm, C collapsed with a 
massive stroke and is now severely disabled. 

C sues D and it is admitted on the latter’s behalf that he was negligent in not making an 
emergency referral to hospital. It is also admitted that, had that been done, C would have got to 
a specialist stroke unit within an hour, have undergone a CT scan within another hour, which 
would have shown the developing blood clot in a cerebral artery, and, in consequence of this 
finding, C would have been started on an anti-thrombotic drug by 11:30am at the latest. 

But it is said on behalf of D that nevertheless C would still not have avoided the massive and 
irreversible deterioration at 3pm and therefore the negligence of the GP made no difference. 
So there is an issue of causation. Essentially the rival cases put by the neurologist/stroke 
physicians called as expert witnesses on each side are as follows: 

C’s expert Dr X says that the literature shows that early intervention within five hours of first 
symptoms more than halves the chances of severe stroke. D’s case based on Professor Y’s 
opinion is that causation is not proved because a different study shows that early intervention 
with an anti-thrombotic reduces the percentage chances of recurrent stroke by only a very 
small amount and no more, in C’s case, than 10%. 

Dr X relies on a study of 850 stroke patients between 2006 and 2008 which shows that after 
one month 80% were in a better condition than C is now in and only 20% were in as bad a 
condition or dead. He says this supports his view, based on his own extensive clinical 
experience, that with proper and timely treatment in hospital, C’s chances of avoiding 
deterioration would have been more than doubled. 

Professor Y says that this study does not assist in understanding how the failure to treat C in 
this case made a difference to the outcome because the study included no “controls” who 
were not given any treatment. 

Professor Y relies on a retrospective observational study of 1000 patients treated both at 
home and in geriatric hospitals between 2008 and 2010 which shows a much greater likelihood 
of deterioration whatever course of treatment was prescribed. 

Both experts also refer to a randomized control trial of 20,000 patients admitted with minor 
symptoms of stroke to general hospitals around the world carried out over ten years from 
1987. Half were given an anti-thrombotic within three hours of admission and half were given a 
placebo. 

Dr X says this shows a significant reduction in the risk of recurrent stroke and, in view of 
improved standards of care in modern specialist stroke units, it supports his view that C’s 
chances of a better outcome would have been more than doubled if he had been given anti-
thrombotic treatment by 11:30am. 

The report of this study published in the British Medical Journal shows that the risk of severe 
stroke within 24 hours of admission was very low even among those who were given no drug 
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treatment (500 patients or 5%). But it improved to (300 or 3%) for those given an anti-
thrombotic. 

Professor Y says that this study in fact therefore shows that the treatment only benefitted two 
people for every 100 treated with the anti-thrombotic so that there was only a 2% reduction in 
risk. Because C would have been cared for in a specialist stroke unit and thus received 
optimum care, Professor Y was prepared to increase the reduction in risk in C’s case from 2% 
to 10% but not more, still nowhere near enough to support a case that C would, on the balance 
of probabilities, have avoided his severe stroke. 

Dr X says a correct interpretation of this study in fact shows a very much higher reduction in 
risk than 2% ‒ he says the relative risk reduction supports his view that C would probably have 
avoided deterioration if he had received an anti-thrombotic at 11:30 am. 

Both experts agree that treatment for suspected stroke has much improved in the last decade. 

Points for discussion 

 Ø Should you challenge the type, quality and reliability of the various studies  
  referred to by the experts? 

 Ø How do you do that? See 2.3 The scientific method. What are your   
  conclusions? 

 Ø Have the experts adequately addressed the distinction between absolute and  
  relative risk? See 1.4 Absolute and relative risk. 

 Ø Is there a confusion between correlation and causation? See 1.5 Correlation  
  and causation. 

 Ø Is it appropriate to make adjustments to the conclusions drawn from these  
  studies for the claimant’s age and previous good health status; if so, how can  
  that be done? What about the family history of hypertension? 

 Ø Has Dr X adequately explained his opinion that the study of 850 stroke patients 
  supports a conclusion that in C’s case the chance of recovery with timely  
  intervention would have been more than doubled? 

 Ø Are the Bradford Hill guidelines relevant to this problem? See 1.5 Correlation  
  and causation. How do you apply them? 

 Ø Do you detect any other statistical problems? 

Further reading 

Sheila M Bird and Jane L Hutton, ‘Statistician expert witnesses in agreement on relative hazards’. (2012) 18(2) 
Clinical Risk 58 discusses a case where experts agreed on what they could and could not say about a case involving a 
patient who experienced pulmonary embolism after admission to Accident and Emergency, and who had not been 
prescribed a particular drug. 

3.5 Case study three – Family 

You are acting for WD, the mother of K aged 17 months. She is opposing an application by the 
local authority for a care and placement order. One of the issues is whether she is addicted to 
or abuses alcohol. Technical tests on samples of her hair have been carried out by experts 
which are capable of detecting recent alcohol consumption. 
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You are preparing for the pre-trial meeting of expert witnesses, with Dr Bunting of EZHairTest 
and Mr Temple from Sandringham Forensic Laboratories. What are the questions you should 
ask at the meeting? 

Harlshire County Council (‘the local authority’) applies to the court for a care order and a 
placement order in respect of K. K is aged 17 months. WD (‘the mother’) opposes the local 
authority’s applications. 

K has some physical, behavioural and developmental difficulties. The local authority is 
concerned about the current and future capability of the mother to look after K. The mother 
vehemently opposes this. The mother has bipolar disorder, Obsessive Compulsive Disorder, 
and has previously also been hospitalised for excess alcohol consumption on at least three 
occasions. The mother is single. The father is unknown. 

There were concerns that in at least the first and second trimester of the pregnancy the 
mother had abused alcohol and that she had also been taking medication for her mental 
health problems. 

WD is undergoing a Care Programme Approach (‘CPA’). WD is currently in the care of an NHS 
psychiatrist, Dr A. Dr A is submitting evidence that WD, the mother, is now undergoing therapy 
and support, including a programme of medication, to the effect that sustained progress has 
been made since K was born. Dr A’s evidence suggests that the mother may be able to care for 
K even while still undergoing treatment. Dr A reports that her bipolar disorder has had severe 
episodes of mania, which are being addressed through the medication, therapy, and support. 
Dr A states that having a low level of alcohol consumption, ideally abstinence, is required to 
ensure that the treatment is successful. Alcohol consumption could trigger or worsen bipolar 
symptoms and reduce the effectiveness of the medication. Chronic or binge drinking could be 
particularly detrimental to WD’s health and function. 

The mother states that she drank heavily until around a year and a half before the baby was 
born, and she had been drinking a mixture of wine and spirits each day. 

The mother agreed that she had previously been hospitalised due to alcoholism, and agreed to 
attend an alcohol avoidance project, CCA. 

On her first visit to CCA she was breathalysed and showed an alcohol reading of 165 mg per 100 
ml. She missed four out of eight subsequent appointments but did give negative breath tests 
when she did attend. 

The mother states that she is trying hard to keep her alcohol intake low, does not keep alcohol 
in the house, and has tried to avoid drinks when out with friends. 

She agreed to two separate hair strand tests for alcohol consumption and a blood test. 

The Society of Hair Testing (SOHT) recommends testing for the ethanol metabolites ethyl 
glucuronide (EtG) and fatty acid ethyl esters (FAEEs), each of which can be measured in hair as 
direct markers of alcohol consumption. The SOHT notes that treatments such as bleaching, 
perming and dying may lead to lower measurements of EtG or false negative results, and may 
also influence concentrations of FAEEs. The SOHT also states that EtG appears not to be 
influenced by hair care products but hair care products that contain ethanol, such as some 
hairsprays or hair lotions may lead to false positive FAEEs. 

In humans, head hair grows one centimetre (cm) per month on average, with a range of 
between approximately 0.7 and 1.5 cm. 

EZHairTest conducted tests on two occasions. Dr Bunting from EZHairTest has supplied a 
report which states that the first sample taken six weeks ago (4cm, from close to the roots) 



© 2019 The Council of the Inns of Court and The Royal Statistical Society – page 50 

had produced a result of EtG = 6.9 pg/mg and FAEEs = 0.31 ng/mg. Dr Bunting suspected that 
the hair showed signs of artificial colouring and treatment, and arranged for a second test. A 
second sample taken three weeks ago (6cm, from close to the roots) found EtG = 5pg/mg and 
FAEEs = 0.13 ng/mg. 

The blood test was for Phosphatidylethanol (PEth) and was conducted at the same time as the 
second hair sample test by EZHairTest. Dr Bunting’s report states that PEth is only produced 
when a person has consumed alcohol, with a detection period of up to 30 days (3-4 weeks) 
and a sensitivity rate (a true positive rate) of over 99%, with a false positive rate of less than 1%. 
Dr Bunting stated that over 20ng/ml is evidence of excessive alcohol abuse, with 100ng/ml or 
above strong evidence of heavy binge drinking. The PEth result for WD was 12ng/ml. 

The local authority requested a separate set of tests from Sandringham Forensic Laboratories. 
They conducted a hair sample test. Mr Temple has supplied a report which states that at the 
request of the local authority’s solicitors, they took a 7.5cm sample from the root of WD’s 
scalp, and found a FAEEs reading of 0.21 ng/mg. 

The local authority plans to use these results in its application to the court. 

The Society of Hair Testing’s 2016 Consensus for the Use of Alcohol Markers in Hair for 
Assessment of both Abstinence and Chronic Excessive Alcohol Consumption13 includes 
statements to the effect that: 

 Ø Hair taken from the vertex region of the scalp is preferred for testing. 

 Ø Tests for both EtG and FAAEs may be affected by cosmetic treatments and  
  thermal hair straightening tools. 

 Ø EtG tests can be affected by bleaching, perming and dying of hair, including  
  potential for false negative results. Hair care products, including those that  
  contain ethanol, do not appear to affect EtG. 

 Ø Concentrations of FAEEs may be influenced by bleaching, perming, colouring  
  of hair, and hair care products that contain ethanol may lead to false positive  
  test results for FAEEs. 

 Ø For abstinence testing, EtG is preferred to FAEEs (details below). For chronic  
  excessive alcohol consumption, either or both of EtG and FAEEs can be used. 

 Ø Interpretation of EtG: For abstinence testing, less than 7 pg/mg “does not  
  contradict self-reported abstinence” for the period before sampling; greater  
  than or equal to 7 pg/mg in proximal scalp hair up to 6 cm “strongly suggests  
  repeated alcohol consumption”, even with a negative FAEEs result.14 For  
  chronic excessive alcohol consumption, EtG of >30 pg/mg in the proximal scalp 
  hair up to 6cm “strongly suggests” such consumption. In all cases, results from  
  samples less than 3cm or greater than 6cm long should interpreted with  
  caution. 

 Ø FAEEs: Using FAEEs alone is not recommended for assessing abstinence.  
  When false negative EtG results are suspected in abstinence testing, a negative 
  result for FAEEs is a value up to 0.12 ng/mg for 0-3 cm proximal scalp hair, or up 
  to 0.15 ng/mg for 0-6cm proximal scalp hair. A positive FAEE result with an EtG  

 
13 Society of Hair Testing, ‘2016 Consensus for the Use of Alcohol Markers in Hair for Assessment of both Abstinence and Chronic 

Excessive Alcohol Consumption’ (Society of Hair Testing, 2016) 
  www.soht.org/images/pdf/Revision%202016_Alcoholmarkers.pdf accessed 6 October 2017 
14 Note that this is not presented in a form recommended by ENFSI Guidelines 
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  measurement less than 7 pg/mg result “does not clearly disprove abstinence,  
  but indicates the need for further monitoring”. 

  For chronic excessive alcohol consumption, results of greater than 0.35 ng/mg  
  for ethyl palmitate in 0–3 cm proximal scalp hair, or greater than 0.45 ng/mg in  
  0–6cm scalp hair, is considered a positive result. Caution is recommended for  
  hair from other than the scalp, or from other lengths of hair. 

Points for discussion 

 Ø What questions might you ask of the test results for alcohol? 

 Ø Would you want expert comment on either or both test results? Consider the  
  time and type of hair samples taken and issues with testing and sampling. Refer 
  to Refresher: The statistician’s toolbox, 1.6 False positives and false  
  negatives, 1.8 Expert opinion evidence and 2.3 The scientific method. 

 Ø What relevance does the timescale of WD’s activities have to the tests and the  
  results? 

 Ø Is WD is expected to maintain abstinence or reduce her alcohol intake? 

The national standards for expert witnesses in family courts is given in Family Court Practice 
Direction 25B. 

3.6 Case study four – Planning 

You are instructed by RASMO (Residents Against Supermarkets in Marshtown Organisation) to 
represent it at the following planning inquiry, to cross-examine Retailer Developments PLC’s 
(RD) highway consultants, and to present the case for RASMO on transportation issues. You 
are due to meet their expert witness Professor Whitehead in conference. RASMO does not 
wish to instruct a transport consultant, on grounds of cost, but wishes Professor Whitehead to 
give evidence. 

Retailer Developments PLC (RD) wants to build a new superstore in an edge-of-centre location 
on a greenfield site at Marshtown, a market town in the Cotswolds. The town has a narrow high 
street (the B9990) possessing some ten local shops on each side of the street and a 
supermarket owned by a local trader, with 1,200 sq. m. of floorspace and a small car park at the 
rear. There are 120 homes within 10 minutes’ walk to the High Street (‘the 10-minute-walk 
isochrone’), 400 homes within a 20-minute-drive isochrone, and 600 more homes within a 
30-minute- drive isochrone. On a neutral weekday such as Wednesday or Thursday the 
supermarket attracts about 700 shoppers between 8.30 am and 6.00 pm. 

There is a small primary school in Church Street which caters for 120 pupils, half of whom are 
brought to school by car (figures supplied by the school secretary). 

It is believed that the existing car parking arrangements in the High Street deter many of those 
living within the 20-minute-driving and 30-minute-driving isochrones to shop in the High 
Street. Surveys were carried out over two weeks by local volunteers who were seated at the 
entrance to the supermarket. Their overall results showed that less than 10% of the shoppers 
have travelled more than 30 minutes to get there. 
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Results of the survey 

Distance 
Travelled 

Walked 10 
mins. or less 

Drove 20 
mins. or less 

Drove 20-30 
mins.  

Drove over 
30 mins. 

Total 

Number 180 320 140 60 700 

Percentage 26% 46% 20% 8% 100% 

 

The inhabitants of Marshtown have nevertheless been concerned about traffic congestion in 
the town centre over recent years. 

The site for the proposed superstore is on the western edge of the town, also within the High 
Street’s 10-minute-walk isochrone. It will be a large store with a floorspace of 5,000 sq m. It is 
part of RD’s supporting planning statement that a store of this size will significantly improve the 
retail offer presently available to current shoppers in the High Street. It is also predicted to 
attract more shoppers from further afield, both inside and outside the 30-minute drive 
isochrones. For many the only alternative is a one-hour drive into Wibchester, some 20 miles 
away to the east where, on the fringes, there are overlapping drive time catchments. There is 
no competing store on the western side of Marshtown. The store will therefore be particularly 
attractive to shoppers both within and outside the 30-minute-drive isochrones from that side. 

The new superstore will have extensive free car parking at ground level. RD claims that this will 
relieve traffic congestion within the town. 

To maximise its customer appeal, RD also wants the proposed development to have a petrol 
filling station (PFS). This will be advertised on the approaches to the slip road leading to 
Marshtown from the A995 dual carriageway, which is one mile away from the High Street. There 
are no PFSs on that road for 16 miles in either direction. 

It is also part of the scheme that there will be pedestrian walks to the town centre, so that when 
people have carried out their shopping at the new store they will be able to walk in and carry 
out linked shopping trips in the High Street. It is claimed that this will reduce the vehicular 
traffic impact on the town centre. 

There is a lot of local opposition to the proposed superstore. The shopkeepers with units on 
the High Street in Marshtown are convinced that the superstore, because of its highly 
competitive pricing policies, will damage their trade. The local preservation society perceives 
that a store in the proposed location will detract from the historic charms of Marshtown. The 
Campaign to Protect Rural England are concerned that the store location on a greenfield site is 
contrary to government planning policy. 

A significant objection comes from a local residents’ group which operates under the acronym, 
‘RASMO’, the Residents Against Supermarkets in Marshtown Organisation. RASMO is 
concerned about the traffic likely to be induced into the town by the new development. 
RASMO is led by Professor William Whitehead, a local resident and retired professor of 
mathematics. He has calculated that, having regard to (1) the number of car-borne shoppers 
who currently shop in the High Street; (2) the number of school trips which are made by car; (3) 
the estimated number of additional car-borne shopping trips to Marshtown which will be 
generated by the new superstore; and (4) the estimated number of trips which will be made 
exclusively to the PFS, the B9990 passing through the town will be in a permanent state of 
gridlock on neutral Wednesdays and Thursdays throughout the year. 
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Existing supermarket 1,500 sq. m with 700 shoppers on a neutral day 

New supermarket @ 5,000 sq. m estimated to serve 2,500 shoppers: 

 

Transfers from High Street 

10 minute walkers transferring from the High Street:   80 

Drivers travelling for less than 20 minutes transferring:   250 

Drivers travelling between 20 and 30 mins transferring:   100  

Drivers travelling for more than 30 minutes transferring:  50 

Total transferred trips:      480 

 

New shoppers (additional trips) induced by new supermarket =  2,020 
(calculated from: 2,500–480) 

(Any separate trips to the PFS unassociated with shopping will be additional but have not been 
calculated.) 

Professor Whitehead also wants to present evidence that the projected increase in traffic 
flows will increase the level of pollution on the High Street above allowable guidelines. 

Points for discussion 

 Ø What are the anticipated lines of attack on Professor Whitehead? Refer to the  
  Guidelines above. How do you deal with potential attacks? 

 Ø Do you foresee problems with the survey taken at the door to the   
  supermarket? Refer to Refresher: The statistician’s toolbox, 2.2 Inferential  
  statistics and probability and 2.3 The scientific method. How do you  
  address any problems? 

 Ø Examine Professor Whitehead’s estimates (1) (2) (3) and (4). How reliable are  
  they? Is there any further research you would recommend to reinforce them? 
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Section 4: Current and Future Issues 

This brief guide can provide only a taster of the issues surrounding statistics, probability and 
law. 

This section begins with a note on current activities on expert evidence, including in the areas 
of statistics, probability and law. 

We conclude with a brief summary of four areas which are controversial in some way, or 
currently under debate. These are worth being aware of, to avoid, for example, your expert 
witness attempting to present evidence in a form that is currently not permitted due to existing 
case law. As these are live issues in law, they may be subject to change. Updates will be made in 
a subsequent edition of this guide. 

Activities improving the reliability of expert evidence 

In its 2011 report, the Law Commission recommended the introduction of a new statutory 
regime for assessing the reliability of expert evidence. Instead, amendments to the Criminal 
Procedure Rules and the Criminal Practice Direction were made by the Government and the 
Lord Chief Justice, respectively. The Government has not given any indication that it intends to 
revisit that report. The formal responses to the Law Commission’s reforms may now be 
considered to be complete. 

However, efforts to improve the reliability and assessment of expert evidence continue 
through a number of projects and activities, of which you should be aware. The Lord Chief 
Justice, the Royal Society, and the Royal Society of Edinburgh have established a working group 
to create primers for use by the judiciary, practitioners and juries in explaining and 
understanding forensic science when used in court. The Forensic Science Regulator is seeking 
to establish a quality standard for interpretation of evidence. The Leverhulme Research 
Centre for Forensic Science at the University of Dundee has been established to raise the 
standards of forensic science used in courts. Legal bodies, including the ICCA, are also 
developing training and professional development programmes, and initiatives advancing 
understanding of statistics, probability and law are underway in several academic settings. 

Further activity may be required to improve the quality of scientific evidence to the degree 
identified as necessary by the Law Commission. In addition, the drive to improve the standard 
of expert evidence has focused mainly on criminal litigation; the need for reform is also 
present in the civil law context, where there has been less activity to date. 

The likelihood ratio 

The likelihood ratio is a measure of the value of the evidence and is used to help determine 
which, if either, of the competing propositions in a trial is true. The likelihood ratio can be set 
out in probabilistic terms as being the ratio of two conditional probabilities. In general terms, 
and set at the level of the offence (as opposed to activity or source level)15 , these are: 

 
15 Propositions in a trial could be at source level, sub-source level, activity level or offence level. See section 3, particularly 

paragraphs 3.4 – 3.8, of Fundamentals of probability and statistical evidence in criminal proceedings (Aitken et al. 2010) for 
definitions and discussion. 
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 A. The probability of observing the evidence given that the defendant is liable  
  (prosecution proposition); relative to: 

 B. The probability of observing the evidence given that the defendant is not liable  
  (defence proposition). 

Either probability would be inadequate and misleading by itself. As the RSS (Aitken et al. 2010) 
has said: 

Even if the evidence is unlikely assuming innocence, it could conceivably be even 
more unlikely assuming guilt. The probative value of the evidence cannot be 
assessed by examining only one of the two competing propositions. 

Currently, this approach is supported within forensic science and set out within the ENFSI 
Guideline for Evaluative Reporting in Forensic Science. 

The Law Commission’s 2011 report, Expert Evidence in Criminal Proceedings in England and 
Wales, recommended an expansion of the approach of two competing propositions to more 
forms of evidence. They recommended: 

…where an expert witness is called by a party to give a reasoned opinion on the 
likelihood of an item of evidence under a proposition advanced by that party, the 
expert’s report must also include, where feasible, a reasoned opinion on the 
likelihood of the item of evidence under one or more alternative propositions 
(including any proposition advanced by the opposing party)16 

They argued for this on the basis that all expert witnesses have an overriding duty to provide 
impartial evidence. They noted that it may not always be feasible to provide such an 
alternative. 

This requirement is not present in the current (2015) Criminal Procedure Rules or the Criminal 
Practice Direction 19A. 

The ENFSI Guideline for Evaluative Reporting in Forensic Science recommends the use of 
likelihood ratios to provide a balanced approach. The guidelines also recommend that the 
reporting be transparent. The case of R v T [2010] demonstrated the importance of an expert 
evaluating a likelihood ratio in a transparent and justifiable way. 

In the case of R v T [2010], T appealed a murder (case redacted) on the basis of identification. 
Footwear marks left at the crime scene had been used to identify a type of trainer that T wore. 
The forensic expert had used a likelihood ratio including assessments of the pattern, size, wear 
and damage to the shoe seen in the shoe print to conclude that "there is at this stage a 
moderate degree of scientific evidence to support the view that the [Nike trainers recovered 
from the appellant] had made the footwear marks” (paragraph 24 of the judgement). These 
calculations, and the assumptions within them, were not evident in the expert witness’ report. 
The court disagreed with this use of likelihood ratios as the numerical values used in the 
calculations were not considered reliable enough – statistical information on shoes in the UK 
was not available in sufficient detail. The court ruled that footwear mark comparison should be 
limited to the expression of non-probabilistic evaluative opinions by experts. The conviction 
was quashed. 

 
16 Law Commission, Expert Evidence in Criminal Proceedings in England and Wales (Law Com No. 325, 2011) para 7.21 (2)(c) 
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R v T also determined that the forensic scientists should not use data in their formulation of 
their expert statements without making the source of the data explicit, and should use only 
data that were appropriate for the task.17 

Bayesian reasoning 

Bayesian reasoning refines the likelihood ratio by using the likelihood ratio multiplied by prior 
odds – the odds of something being the case before the introduction of new evidence – to 
develop the posterior odds – the odds of something being the case in the light of the new 
evidence. 

Statisticians consider likelihood ratios to be a component of Bayesian reasoning. However, 
though the likelihood ratio approach to evaluating evidence is supported within forensic 
science, and set out within the ENFSI Guideline for Evaluative Reporting in Forensic Science, 
the role of Bayesian reasoning within the courts is less clear-cut, and controversial. 

Introductions to Bayesian reasoning are provided in the RSS guide Fundamentals of 
probability and statistical evidence in criminal proceedings (Aitken et al. 2010, paragraphs 2.25 
– 2.31) and Bayes and the Law (Fenton et al., 2016), which includes a review of cases using 
Bayesian reasoning. 

Many statisticians and scientists consider Bayesian reasoning, and related tools such as Bayes’ 
formula and Bayesian nets, to simply be an extension of logical reasoning, a heuristic tool for 
inferential reasoning. Many statisticians and mathematicians believe that Bayesian reasoning 
should be used by experts in formulating their expert judgments, but there is not a consensus 
on the use of Bayesian reasoning in court for either criminal or civil cases. 

Denis Adams was tried for the rape of a woman in a park. Evidence in his favour included the 
victim’s declaration at an identity parade that Adams was not her attacker, and an alibi from his 
girlfriend. A DNA profile of evidence from the scene matched that of a DNA profile of Adams, 
which the prosecution said had a random match probability of 1 in 200 million. At trial, a jury 
found him guilty. Two subsequent appeals sought to address the interpretation of the 1 in 200 
million figure in the context of the evidence in favour of Adams’ innocence, by guiding the jury 
through Bayesian reasoning. Both appeals failed, with the court each time stating an objection 
to the use of Bayesian reasoning by juries to evaluate non-scientific evidence. 

In R v T, the court drew upon the judgement of R v Adams to conclude that “outside the field of 
DNA (and possibly other areas where there is a firm statistical base), […] Bayes Theorem and 
likelihood ratios should not be used.” (paragraph 90). The court made no attempt to evaluate 
the use of likelihood ratios in relation to other types of scientific evidence. 

The position remains unclear. Any change to the position would be particularly dependent on 
how this approach is presented, or the extent to which it can be made understandable to 
lawyers and juries. 

 
17 R v South [2011] is an example of a case where footmark evidence was permitted under the R v T guidelines. See also Redmayne 

et al. (2011) and Robertson et al. (2011) for critique of the R v T judgement. 



© 2019 The Council of the Inns of Court and The Royal Statistical Society – page 57 

The use of epidemiological evidence and the ‘doubling of 

risk’ test 

As we saw in 1.5 Correlation and causation, techniques drawn from epidemiology could be 
appropriate for addressing issues of causation. We have also noted the tension between the 
legal approach focused on the causes of effects, and the scientific approach focused on the 
effects of causes (see Differences of approach in 3.1 Communicating with experts about 
statistical evidence). 

As Lord Nicholls said in Gregg v Scott: 

Statistical evidence, however, is not strictly a guide to what would have happened 
in one particular case. Statistics record retrospectively what happened to other 
patients in more or less comparable situations. They reveal trends of outcome. 
They are general in nature. The different way other patients responded in a similar 
position says nothing about how the claimant would have responded. Statistics 
do not show whether the claimant patient would have conformed to the trend or 
been an exception from it. They are an imperfect means of assessing outcomes 
even of groups of patients undergoing treatment, let alone a means of providing 
an accurate assessment of the position of one individual patient.18 

Legal and statistical scholars argue that the court’s approach to epidemiological evidence is 
not consistent or sufficient (for example, Dawid et al., McIvor, Turton). 

In England and Wales, these issues are particularly noticeable where a court is to determine 
what caused a disease where there are competing explanations; for example, smoking, 
asbestos or something else.19 Where there are alternative explanations, the courts may be 
persuaded to accept a causative link on the balance of probabilities based on statistical or 
expert evidence where exposure to a relevant chemical or agent can be shown to have at least 
doubled the risk which exists in the absence of such exposure of contracting that disease.20 
This approach is controversial though it has succeeded, for example, in Novartis Grimsby Ltd v 
Cookson, where Cookson successfully argued that exposure to workplace chemicals, rather 
than his past smoking habit, had led to his bladder cancer.21 

In Heneghan v Manchester Dry Docks Ltd [2016] EWCA Civ 86; [2016] 1 W.L.R. 2036, Lord 
Dyson MR said: 

The ‘doubles the risk’ test is one that applies epidemiological data to determining 
causation on the balance of probabilities where medical science does not permit 
determination with certainty of how an injury was caused. If statistical evidence 
shows that a tortfeasor more than doubled the risk that the victim would suffer 
the injury, it follows that it is more likely than not that the tortfeasor caused the 
injury. 

 
18 [2005] UKHL 2; [2005] 2 A.C. 176 [28] 
19 See Jones v Secretary of State for Energy and Climate Change [2013] EHWC 1023 (QB) 
20 This is sometimes referred to as a relative risk being greater than 2: see 1.4 Absolute and relative risk, though this is a 

convenient shorthand rather than a reliable rule: it implies that more than one-half of the cases can be attributed to exposure, 
but makes assumptions about the individuals in the instant case, and epidemiologists do not treat findings of a relative risk 
greater than two as proof of causation. 

21 [2007] EWCA Civ 1261. See also Jones v Secretary of State for Energy and Climate Change [2012] EWHC 2936 (QB) (the 
Phurnacite Workers Group Litigation) 



© 2019 The Council of the Inns of Court and The Royal Statistical Society – page 58 

The discussion in Sienkiewicz v Greif (UK) Ltd [2011] 2 A.C. 229 of this method of assigning 
causation shows that this approach needs to be treated both carefully and also in context.22 In 
spite of strong criticism from some legal scholars (see, for example, McIvor, Turton), courts 
continue to apply a ‘doubles the risk’ test. The courts’ view on doubling of risk and causation is 
likely to develop as medical, scholarly and legal thinking develop. An American judge said in 
Merrell Dow Pharmaceuticals Inc v Havner (1997): 

The use of scientifically reliable epidemiological studies and the requirement of 
more than a doubling of the risk strikes a balance between the needs of our legal 
system and the limits of science. We do not hold, however, that a relative risk of 
more than 2.0 is a litmus test or that a single epidemiological test is legally 
sufficient evidence of causation. Other factors must be considered. As already 
noted, epidemiological studies only show an association. 

Estimates of life expectancy 

Statistics are used in personal injury cases to determine life expectancy: the Government’s 
actuarial or “Ogden” tables use UK mortality statistics to provide appropriate multipliers for 
calculating the net present value (NPV) of future loss or expense. 

Sometimes general mortality tables are inappropriate because it is agreed that the claimant, 
usually as a result of the accident but sometimes because of unrelated illness or disease, has a 
much lower life expectancy than normal. Specialist statisticians have created their own 
databases derived, for example, from populations of those who have suffered traumatic brain 
injury from which a tailor-made life table for the individual claimant may be created. 

This is also controversial when used in court because of the need to ensure that the population 
from which the data is derived is comparable to the claimant’s situation. For example, if the 
claimant is going to receive sufficient damages to provide all the nursing care needed in future, 
he or she may be less at risk of premature death than those victims of accidents who have no 
claim for damages, and do not have access to such beneficial care.23 
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Bernard Robertson, G A Vignaux and Charles E H Berger, ‘Extending the confusion about Bayes’ 74 (2011) Modern 
Law Review 430 includes critique of the R v T judgement 

Colin Aitken, Paul Roberts, Graham Jackson, Fundamentals of probability and statistical evidence in criminal 
proceedings (Royal Statistical Society 2010) 

Sienkiewicz v Greif (UK) Ltd [2011] UKSC 10; [2011] 2 AC 229 

The correspondence in Science and Justice 54 (4) of Alex Biedermann, Tacha Hicks, Franco Taroni, Christophe 
Champod and Colin Aitken, ‘On the use of the likelihood ratio for forensic evaluation: Response to Fenton et al.’ 54 
(2014) Science and Justice 316 and Norman Fenton, David Lagnado, Anne Hsu, Daniel Berger and Martin Neil, 
‘Response to “On the use of the likelihood ratio for forensic evaluation: Response to Fenton et al.”’ 54 (2014) Science 
and Justice 319 illustrates current discussion in the application of the likelihood ratio, and whether the two 
propositions need to be exhaustive or not. 

Gemma Turton, Evidential Uncertainty in Causation in Negligence (Hart Publishing 2016) 

UK Government’s Actuary Department, Actuarial Tables with explanatory notes for use in Personal Injury and Fatal 
Accident Cases (7th edn, The Stationery Office 2011) 

 

  



© 2019 The Council of the Inns of Court and The Royal Statistical Society – page 60 

Further Resources 

General statistics, probability and the scientific method 

Sense About Science, ‘Making Sense of Statistics’ (Sense About Science, 29 April 2010) 
<http://senseaboutscience.org/activities/making-sense-of-statistics/> is a short statistics primer. 

National Research Council, Reference Manual on Scientific Evidence: Third Edition (The National Academies Press 
2011). This book is American but its two sections on ‘How Science Works’ (p. 37-54) and ‘Reference Guide on 
Statistics’ (p.211-302) are very clear and include examples of legal application. 

Huff D, How to Lie with Statistics (New edn, Penguin 1991). Whilst this book was first produced in 1954, it remains one 
of the highest selling books on statistics. It covers the misuse of statistics from biased samples, to dubious graphs 
and trends. 

Blastland M and Dilnot A, The Tiger That Isn’t (Profile Books 2008). A popular introduction to statistics and 
probability. 

Freeman J V, Walters S J and Campbell M J, How to Display Data (BMJ Books 2008). A short and accessible guide to 
presenting data. 

Cancer Research UK provides some useful information about the scientific method on its website at Cancer 
Research UK, ‘What is a randomised trial?’ (Cancer Research UK, 29 October 2014) 
<www.cancerresearchuk.org/file/34246> accessed 6 October 2017. 

Statistics, probability and the law 

The RSS has published a set of four practitioner guides which looks at communicating and interpreting statistical 
evidence in the administration of criminal justice. They are intended to assist judges, lawyers, forensic scientists and 
other expert witnesses in coping with the demands of modern criminal litigation. 

 1. Colin Aitken, Paul Roberts, Graham Jackson, Fundamentals of probability and   
 statistical evidence in criminal proceedings (Royal Statistical Society 2010) 

 2. Roberto Puch-Solis, Paul Roberts, Susan Pope, Colin Aitken, Assessing the   
 probative value of DNA evidence (Royal Statistical Society 2012) Includes a   
 short guide to DNA and testing procedures. 

 3. Paul Roberts and Colin Aitken, The logic of forensic proof: inferential reasoning   
 in criminal evidence and forensic science, (Royal Statistical Society 2014) 

 4. Graham Jackson, Colin Aitken and Paul Roberts, Case assessment and    
 interpretation of expert evidence (Royal Statistical Society 2015) 

The Royal Statistical Society’s Statistics and Law section welcomes members of the statistical, legal or forensic 
scientific communities to join their meetings on topics of criminal and civil law www.rss.org.uk/law. 

Aitken C and Taroni F, 'Fundamentals of statistical evidence - a primer for legal professionals', (2008) 12 
International Journal of Evidence and Proof 181 

Dawid, A P, ‘Statistics and the law’, in Bell A, Swenson-Wright J and Tybjerg K (eds), In Evidence (Cambridge 
University Press 2008) 

Kadane J B ‘Statistics in the Law: A Practitioner's Guide, Cases, and Materials’ (Oxford University Press 2008). 
Whilst mostly based on American law, Part 5 of this book reviews English law and provides information on how 
statistical analysis can be shaped to address relevant legal questions. 

Schneps L and Colmez C, Math on Trial: How Numbers Get Used and Abused in the Courtroom (Basic Books 2013). 
Mathematicians Leila Schneps and Coralie Colmez describe ten trials from the nineteenth century to today where 
maths has been misused including the cases of Sally Clark, Amanda Knox, and Lucia de Berk. 

Finkelstein M O, Basic Concepts of Probability and Statistics in the Law (Springer Science 2009) 

Gastwirth, J L Statistical Reasoning in Law and Public Policy. Vol. 1 Statistical Concepts and Issues of Fairness. Vol. 2. 
Tort Law, Evidence and Health. (Academic Press 1988) provides a US perspective. 
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UK legal commentary and guidance on statistics and probability 

Law Commission, Expert Evidence in Criminal Proceedings in England and Wales (Law Com No. 325, 2011) 

Judicial College (2017) The Crown Court Compendium. Relevant sections include DNA at Chapter 15-8. 

Forensic science 

Sense About Science and EUROFORGEN, ‘Making Sense of Forensic Genetics’ (Sense About Science, 25 January 
2017) <http://senseaboutscience.org/activities/making-sense-of-forensic-genetics/> accessed 6 October 2017. An 
introductory guide to forensic science, focusing on the use of DNA in criminal investigations. 

National Research Council, Reference Manual on Scientific Evidence: Third Edition (The National Academies Press 
2011). Includes a Reference Guide on DNA Identification Evidence. 

ENFSI, ‘ENFSI guideline for evaluative reporting in forensic science’ (ENFSI 2015) <http://enfsi.eu/news/enfsi-
guideline-evaluative-reporting-forensic-science/> accessed 6 October 2017 

‘Probability and statistics in forensic science’ was a scientific programme of the Isaac Newton Institute, Cambridge 
in 2016. Outputs from the programme, including talks and papers by lawyers, statisticians and forensic experts, are 
being published at https://www.newton.ac.uk/event/fos 
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Index of Statistical Terms 

These terms are defined in context and in-line in the text. 

absolute risk (AR) ....................................... 16 

analysing data .............................................. 8 

Bayesian reasoning .................................... 57 

Bradford Hill guidelines ............................ 21 

collecting data ............................................. 8 

conditional probability ............................. 36 

confidence interval .................................... 35 

confidence level .......................................... 35 

confounding variable ................................ 19 

convenience samples ............................... 29 

correlations ................................................... 17 

data .................................................................. 8 

defence fallacy ............................................ 23, 26 

dependent ..................................................... 36 

epidemiological studies ........................... 18 

epidemiology ................................................ 20 

estimate ......................................................... 8, 34 

event ................................................................ 13 

false negative ............................................... 22 

false positive ................................................. 22 

frequency ...................................................... 9 

independence ............................................. 14 

independent ................................................. 14, 33 

interpreting data ......................................... 8 

interquartile range (IQR) .......................... 9 

interval estimate ......................................... 35 

likelihood ratio ............................................. 55 

margin of error ............................................. 35 

mean ................................................................ 8

median ............................................................ 9 

mode ............................................................... 9 

model .............................................................. 34 

non-sampling error .................................... 36 

outliers ............................................................ 9 

population ..................................................... 8 

posterior odds ............................................. 57 

power .............................................................. 39 

prior odds ...................................................... 57 

probability ..................................................... 32 

prosecutor’s fallacy ................................... 23 

random match probability (RMP) ........ 28 

randomised controlled trial ................... 38 

range ................................................................ 9 

relative risk (RR) .......................................... 16 

representative ............................................. 8 

risk .................................................................... 16 

sample ............................................................ 8 

sample mean ................................................ 34 

sampling ......................................................... 29 

sampling error .............................................. 36 

significance ................................................... 39 

skew ................................................................. 9 

source probability error ........................... 28 

spurious correlation .................................. 18 

standard deviation (SD) .......................... 8 

transposing the conditional ................... 23 

variable ........................................................... 14 
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